Informationally restricted correlations: a general framework for classical and quantum systems
1Département de Physique Appliquée, Université de Genève, CH-1211 Genève, Switzerland
2Institute for Quantum Optics and Quantum Information – IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
3Laboratoire d'Information Quantique, CP 225, Université libre de Bruxelles (ULB), Av. F. D. Roosevelt 50, 1050 Bruxelles, Belgium
Published: | 2022-01-05, volume 6, page 620 |
Eprint: | arXiv:2007.16145v4 |
Doi: | https://doi.org/10.22331/q-2022-01-05-620 |
Citation: | Quantum 6, 620 (2022). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
We introduce new methods and tools to study and characterise classical and quantum correlations emerging from prepare-and-measure experiments with informationally restricted communication. We consider the most general kind of informationally restricted correlations, namely the ones formed when the sender is allowed to prepare statistical mixtures of mixed states, showing that contrary to what happens in Bell nonlocality, mixed states can outperform pure ones. We then leverage these tools to derive device-independent witnesses of the information content of quantum communication, witnesses for different quantum information resources, and demonstrate that these methods can be used to develop a new avenue for semi-device independent random number generators.
► BibTeX data
► References
[1] A. Ambainis, A. Nayak, A. Ta-Shma, and U. Vazirani, in Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC '99 (Association for Computing Machinery, New York, NY, USA, 1999) pp. 376–383.
https://doi.org/10.1145/301250.301347
[2] E. F. Galvão, Phys. Rev. A 65, 012318 (2001).
https://doi.org/10.1103/PhysRevA.65.012318
[3] P. Trojek, C. Schmid, M. Bourennane, C. Brukner, M. Zukowski, and H. Weinfurter, Phys. Rev. A 72, 050305 (2005).
https://doi.org/10.1103/PhysRevA.72.050305
[4] A. Ambainis, D. Leung, L. Mancinska, and M. Ozols, Quantum random access codes with shared randomness (2008), arXiv:0810.2937 [quant-ph].
arXiv:0810.2937
[5] R. Gallego, N. Brunner, C. Hadley, and A. Acín, Phys. Rev. Lett. 105, 230501 (2010).
https://doi.org/10.1103/PhysRevLett.105.230501
[6] N. Brunner, M. Navascués, and T. Vértesi, Phys. Rev. Lett. 110, 150501 (2013).
https://doi.org/10.1103/PhysRevLett.110.150501
[7] A. Tavakoli, A. Hameedi, B. Marques, and M. Bourennane, Phys. Rev. Lett. 114, 170502 (2015).
https://doi.org/10.1103/PhysRevLett.114.170502
[8] M. Navascués and T. Vértesi, Phys. Rev. Lett. 115, 020501 (2015).
https://doi.org/10.1103/PhysRevLett.115.020501
[9] M. Smania, A. M. Elhassan, A. Tavakoli, and M. Bourennane, npj Quantum Inf. 2, 16010 (2016).
https://doi.org/10.1038/npjqi.2016.10
[10] A. Tavakoli and M. Żukowski, Phys. Rev. A 95, 042305 (2017).
https://doi.org/10.1103/PhysRevA.95.042305
[11] D. Martínez, A. Tavakoli, M. Casanova, G. Cañas, B. Marques, and G. Lima, Phys. Rev. Lett. 121, 150504 (2018).
https://doi.org/10.1103/PhysRevLett.121.150504
[12] N. Brunner, S. Pironio, A. Acin, N. Gisin, A. A. Méthot, and V. Scarani, Phys. Rev. Lett. 100, 210503 (2008).
https://doi.org/10.1103/PhysRevLett.100.210503
[13] M. Pawłowski and N. Brunner, Phys. Rev. A 84, 010302 (2011).
https://doi.org/10.1103/PhysRevA.84.010302
[14] H.-W. Li, Z.-Q. Yin, Y.-C. Wu, X.-B. Zou, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, Phys. Rev. A 84, 034301 (2011a).
https://doi.org/10.1103/PhysRevA.84.034301
[15] E. Woodhead and S. Pironio, Phys. Rev. Lett. 115, 150501 (2015).
https://doi.org/10.1103/PhysRevLett.115.150501
[16] A. Tavakoli, J. Kaniewski, T. Vértesi, D. Rosset, and N. Brunner, Phys. Rev. A 98, 062307 (2018).
https://doi.org/10.1103/PhysRevA.98.062307
[17] T. Van Himbeeck, E. Woodhead, N. J. Cerf, R. García-Patrón, and S. Pironio, Quantum 1, 33 (2017).
https://doi.org/10.22331/q-2017-11-18-33
[18] J. B. Brask, A. Martin, W. Esposito, R. Houlmann, J. Bowles, H. Zbinden, and N. Brunner, Phys. Rev. Applied 7, 054018 (2017).
https://doi.org/10.1103/PhysRevApplied.7.054018
[19] R. Chaves, J. B. Brask, and N. Brunner, Phys. Rev. Lett. 115, 110501 (2015).
https://doi.org/10.1103/PhysRevLett.115.110501
[20] A. Tavakoli, Phys. Rev. Lett. 126, 210503 (2021).
https://doi.org/10.1103/PhysRevLett.126.210503
[21] A. Tavakoli, E. Zambrini Cruzeiro, J. B. Brask, N. Gisin, and N. Brunner, Quantum 4, 332 (2020).
https://doi.org/10.22331/q-2020-09-24-332
[22] R. Konig, R. Renner, and C. Schaffner, IEEE Trans. Inf. Th. 55, 4337 (2009).
https://doi.org/10.1109/TIT.2009.2025545
[23] N. Ciganović, N. J. Beaudry, and R. Renner, IEEE Trans. Inf. Th. 60, 1573 (2013).
https://doi.org/10.1109/TIT.2013.2295314
[24] A. Tavakoli, J. Pauwels, E. Woodhead, and S. Pironio, Correlations in entanglement-assisted prepare-and-measure scenarios (2021), arXiv:2103.10748v2, 2103.10748.
https://doi.org/10.1103/PRXQuantum.2.040357
arXiv:2103.10748
[25] L. Wang and R. Renner, Phys. Rev. Lett. 108, 200501 (2012).
https://doi.org/10.1103/PhysRevLett.108.200501
[26] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Rev. Mod. Phys. 86, 419 (2014).
https://doi.org/10.1103/RevModPhys.86.419
[27] S. Lörwald and G. Reinelt, EURO J. Comput. Optim. 3, 297 (2015).
https://doi.org/10.1007/s13675-015-0040-0
[28] R. F. Werner and M. M. Wolf, Quantum Inf. Comput. 1, 1 (2001).
[29] K. F. Pál and T. Vértesi, Phys. Rev. A 82, 022116 (2010).
https://doi.org/10.1103/PhysRevA.82.022116
[30] A. Tavakoli, M. Pawłowski, M. Żukowski, and M. Bourennane, Phys. Rev. A 95, 020302 (2017).
https://doi.org/10.1103/PhysRevA.95.020302
[31] J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).
[32] S. Burgdorf, K. Cafuta, I. Klep, and J. Povh, Mathematical Programming 137, 557 (2013).
https://doi.org/10.1007/s10107-011-0505-8
[33] I. Klep and J. Povh, Journal of Global Optimization 64, 325 (2016).
https://doi.org/10.1007/s10898-015-0308-1
[34] M. Navascués, S. Pironio, and A. Acín, New J. Phys. 10, 073013 (2008), publisher: IOP Publishing.
https://doi.org/10.1088/1367-2630/10/7/073013
[35] S. Pironio, M. Navascués, and A. Acín, SIAM J. Opt. 20, 2157 (2010), publisher: Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/090760155
[36] S. Gribling, D. de Laat, and M. Laurent, Foundations of Computational Mathematics 19, 1013 (2019).
https://doi.org/10.1007/s10208-018-09410-y
[37] J. Ahrens, P. Badziag, A. Cabello, and M. Bourennane, Nat. Phys. 8, 592 (2012).
https://doi.org/10.1038/nphys2333
[38] H.-W. Li, Z.-Q. Yin, Y.-C. Wu, X.-B. Zou, S. Wang, W. Chen, G.-C. Guo, and Z.-F. Han, Phys. Rev. A 84, 034301 (2011b).
https://doi.org/10.1103/PhysRevA.84.034301
[39] H.-W. Li, M. Pawłowski, Z.-Q. Yin, G.-C. Guo, and Z.-F. Han, Phys. Rev. A 85, 052308 (2012).
https://doi.org/10.1103/PhysRevA.85.052308
[40] A. Tavakoli, D. Rosset, and M.-O. Renou, Phys. Rev. Lett. 122, 070501 (2019).
https://doi.org/10.1103/PhysRevLett.122.070501
Cited by
[1] Amélie Piveteau, Jef Pauwels, Emil Håkansson, Sadiq Muhammad, Mohamed Bourennane, and Armin Tavakoli, "Entanglement-assisted quantum communication with simple measurements", Nature Communications 13 1, 7878 (2022).
[2] Carlos Vieira, Carlos de Gois, Lucas Pollyceno, and Rafael Rabelo, "Interplays between classical and quantum entanglement-assisted communication scenarios", New Journal of Physics 25 11, 113004 (2023).
[3] Mário Silva, Ricardo Faleiro, Paulo Mateus, and Emmanuel Zambrini Cruzeiro, "A coherence-witnessing game and applications to semi-device-independent quantum key distribution", Quantum 7, 1090 (2023).
[4] Jef Pauwels, Armin Tavakoli, Erik Woodhead, and Stefano Pironio, "Entanglement in prepare-and-measure scenarios: many questions, a few answers", New Journal of Physics 24 6, 063015 (2022).
[5] Simon Morelli, Hayata Yamasaki, Marcus Huber, and Armin Tavakoli, "Entanglement Detection with Imprecise Measurements", Physical Review Letters 128 25, 250501 (2022).
[6] Jef Pauwels, Stefano Pironio, Erik Woodhead, and Armin Tavakoli, "Almost Qudits in the Prepare-and-Measure Scenario", Physical Review Letters 129 25, 250504 (2022).
[7] Oskari Kerppo, "Partial-ignorance communication tasks in quantum theory", Physical Review A 105 6, 062607 (2022).
[8] Armin Tavakoli, Alejandro Pozas-Kerstjens, Ming-Xing Luo, and Marc-Olivier Renou, "Bell nonlocality in networks", Reports on Progress in Physics 85 5, 056001 (2022).
[9] Armin Tavakoli, Emmanuel Zambrini Cruzeiro, Roope Uola, and Alastair A. Abbott, "Bounding and Simulating Contextual Correlations in Quantum Theory", PRX Quantum 2 2, 020334 (2021).
[10] Armin Tavakoli, Jef Pauwels, Erik Woodhead, and Stefano Pironio, "Correlations in Entanglement-Assisted Prepare-and-Measure Scenarios", PRX Quantum 2 4, 040357 (2021).
[11] Armin Tavakoli, "Semi-Device-Independent Framework Based on Restricted Distrust in Prepare-and-Measure Experiments", Physical Review Letters 126 21, 210503 (2021).
[12] Tony Metger, Yfke Dulek, Andrea Coladangelo, and Rotem Arnon-Friedman, "Device-independent quantum key distribution from computational assumptions", New Journal of Physics 23 12, 123021 (2021).
[13] Ming-Xing Luo, "Network configuration theory for all networks", arXiv:2107.05846, (2021).
[14] George Moreno, Ranieri Nery, Carlos de Gois, Rafael Rabelo, and Rafael Chaves, "Semi-device-independent certification of entanglement in superdense coding", Physical Review A 103 2, 022426 (2021).
[15] Anubhav Chaturvedi, Marcin Pawłowski, and Debashis Saha, "Quantum description of reality is empirically incomplete", arXiv:2110.13124, (2021).
The above citations are from Crossref's cited-by service (last updated successfully 2023-12-07 06:39:45) and SAO/NASA ADS (last updated successfully 2023-12-07 06:39:46). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.