
Informationally restricted correlations: a general framework
for classical and quantum systems
Armin Tavakoli1,2, Emmanuel Zambrini Cruzeiro 3, Erik Woodhead3, and Stefano Pironio3

1Département de Physique Appliquée, Université de Genève, CH-1211 Genève, Switzerland
2Institute for Quantum Optics and Quantum Information – IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090

Vienna, Austria
3Laboratoire d’Information Quantique, CP 225, Université libre de Bruxelles (ULB),

Av. F. D. Roosevelt 50, 1050 Bruxelles, Belgium

We introduce new methods and tools to
study and characterise classical and quan-
tum correlations emerging from prepare-and-
measure experiments with informationally re-
stricted communication. We consider the most
general kind of informationally restricted cor-
relations, namely the ones formed when the
sender is allowed to prepare statistical mix-
tures of mixed states, showing that contrary to
what happens in Bell nonlocality, mixed states
can outperform pure ones. We then leverage
these tools to derive device-independent wit-
nesses of the information content of quantum
communication, witnesses for different quan-
tum information resources, and demonstrate
that these methods can be used to develop a
new avenue for semi-device independent ran-
dom number generators.

1 Introduction
Consider an experiment of the kind illustrated in
Fig. 1, where a sender, Alice, selects an input x ∈
{1, . . . , nX}, encodes it into some physical system and
transmits it to a receiver, Bob. Bob performs on
the incoming system some measurement, represented
by an input y ∈ {1, . . . , nY }, and gets an outcome
b ∈ {1, . . . , nB}. This prepare-and-measure experi-
ment is ubiquitous in physics and forms the basis of
many communication systems.

The transmission of physical messages between Al-
ice and Bob serves to establish certain correlations
between them. These correlations can be fully char-
acterised by the set of probabilities p(b|x, y) which
represent how, for a given measurement y performed
by Bob, his outcome b depends on Alice’s input x. In
full generality, we can associate to each input x se-
lected by Alice a quantum state ρx and to each mea-
surement y selected by Bob a positive operator-valued
measure (POVM) {Mb|y}b, so that we can write

p(b|x, y) = Tr
[
ρxMb|y

]
. (1)

Figure 1: Illustration of prepare-and-measure experiment in
which the communication is restricted to carry at most α bits
of information about X

The special case where Alice and Bob are manipulat-
ing classical systems, instead of quantum ones, can
be treated analogously by taking the states and mea-
surements to be diagonal in the same basis:

ρx =
∑
m

p(m|x)|m〉〈m|, (2)

Mb|y =
∑
m

p(b|y,m)|m〉〈m|, (3)

where the variable m denotes the possible values of
Alice’s classical message.

In this work, we are interested in characterising
what kind of correlations between Alice and Bob, i.e.,
which set of probabilities p(b|x, y), are possible under
the sole restriction of some constraint on the com-
munication capabilities of the classical or quantum
systems ρx emitted by Alice.

To date, the most commonly considered communi-
cation constraint in this setting has been a bound on
the Hilbert-space dimension d of the emitted quantum
systems (corresponding to the number of different
possible messages m in the classical case). In the last
two decades, a large body of works has investigated
the interplay between correlations and dimension in
this setting [1–11]. This line of work led, e.g., to the
notion of dimension witnesses [5, 12] and to semi-
device-independent protocols [13], such as random-
ness generation [14], quantum key distribution [15],
and self-testing [16]. Evidently, a quantum or clas-
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sical d-dimensional system can carry at most log2 d
bits of information and thus a bound on the dimen-
sion represents an information constraint. However,
the physical dimension does not provide a complete
picture of the concept of information. For instance,
there are many systems of dimension d′ > d that do
not carry more than log2 d bits of information. Fur-
thermore, in practical semi-device-independent pro-
tocols, assuming an exact bound on the dimension
may be problematic to justify (a fact that has partly
motivated other recent approaches [17–20]). A more
satisfying and practically relevant approach may be to
constrain the communication in terms of a continuous
information measure.

Following [21], we specify here the communication
constraint on the physical systems ρx received by Bob
as an upper bound

Pg(X|B) ≤ G (4)

on the guessing probability of the input X1,

Pg(X|B) = max
{Nx}x

∑
x

qx Tr
[
ρxNx

]
, (5)

where the maximisation is taken over all possible
POVMs {Nx}x on the physical system that Bob re-
ceives. This guessing probability represents the opti-
mum average probability with which Bob would cor-
rectly guess Alice’s input x if he were to perform an
ideal POVM on the incoming messages ρx, assuming
that Alice selects each input with prior probability
qx [22]. The guessing probability Pg(X|B) can take
any value from Pg(X|B) = maxx qx when the states
are the same and hence carry no information about
Alice’s input (in which case Bob’s best guessing strat-
egy is to output the most probable input x according
to qx), up to Pg(X|B) = 1 when they are perfectly
distinguishable. Different communication restrictions
on the messages can be specified by the choice of the
bound G, as well as the input probabilities qx.

Equivalently, one can express the communication
restriction (4) as an upper bound I(X|B) ≤ α on the
information measure

I(X|B) = Hmin(X)−Hmin(X|B), (6)

defined in term of the min-entropies
Hmin(X) = − log2

(
maxx{qx}

)
and Hmin(X|B) =

− log2
(
Pg(X|B)

)
. This quantity, expressed in

bits, ranges from I(X|B) = 0 when the states
carry no information about Alice’s input, up to
I(X|B) = log2(nX) bits, when they are per-
fectly distinguishable and chosen equiprobably, i.e.,
qx = 1/nX . There exist in principle a number of
different other information measures that we could
consider (see e.g. [23]) but the one we choose has a
clear operational meaning and is convenient to work
with.

1X and B are random variables.

We emphasise that qx does not represent the actual
prior from which Alice selects her input. Instead, it is
a part of the assumption on Alice’s source. Indeed, we
are interested here in constraining conditional prob-
abilities p(b|x, y) which therefore do not depend on
any prior probabilities with which Alice’s input x
and Bob’s inputs y are selected. To constrain these
conditional probabilities p(b|x, y) we make a certain
assumption about the source, specifically about the
information-capacity of the ensemble of states {ρx}
it prepares. This information-capacity can be defined
in various ways. The definition we chose here can be
thought of as a fictious game: how well the classi-
cal variable x could correctly be identified by Bob if
it were encoded by Alice in the state ρx and chosen
with probability qx. In the same way that the op-
timal measurement performed to guess x in this fic-
tious game is not necessarily the same as the actual
measurements taking place in Bob’s measurement ap-
paratuses and leading to the conditional probabilities
p(b|x, y), the prior probabilities qx need not be the
same as the prior probabilities px used by Alice to
select her input in any actual scenario or protocol in-
volving the conditional probabilities p(b|x, y). In par-
ticular, a given scenario, say a DIRNG protocol where
Alice’s select her input with some fixed probabilities
px, can be analyzed using different choices of qx, this
simply correspond to different assumptions about the
source.

Note that one can also completely eliminate qx from
the analysis by choosing the uniform prior qx = 1/nX
(where nX denotes the number of inputs of Alice). For
a bound of the form I(X|B) ≤ α, this corresponds to
the strongest assumption on the source in the sense
that I(X|B)uni ≤ α implies I(X|B)bias ≤ α for any
choice of biased distribution qx, as shown in [24].

Finally, we remark that instead of viewing the
bound (4) as characterizing the preparations of Al-
ice, we can alternatively view it as a constraint on
the channel relating Alice to Bob. Indeed, ε = 1−G
can be understood as an upper-bound on the average2

error through which a classical message of size nX can
be communicated in one shot through the channel for
whatever encoding Alice may choose [25].

We develop here a versatile toolbox for characteris-
ing the set of probabilities p(b|x, y) that are possible
given arbitrary information constraints Pg(X|B) ≤ G
(or, equivalently, I(X|B) ≤ α). Our approach is fully
general and does not make any assumptions about the
states and measurements beyond the information con-
straint, and in particular no assumptions about their
dimension. In the classical case, we provide a char-
acterisation of the set of informationally restricted
correlations in terms of linear programming and in
the quantum case through a hierarchy of semidefinite
programming relaxations. We also show, in analogy

2The reference [25] defines the error ε for uniform prior, but
one can also generalize this concept for abitrary priors qx.
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with the dimension bounded case, how to apply our
methods to construct device-independent witnesses of
communication (quantified in terms of our informa-
tion measure), resource inequalities for classical and
quantum systems carrying one bit of information, and
semi-device-independent random number generation
(RNG) protocols. In particular, we will show con-
crete examples of high-rate RNG and also demon-
strate that data obtained in RNG experiments as-
suming a 1-qubit bound can be recycled to certify the
same amount of randomness under the strictly weaker
assumption of a 1-bit information bound.

Our work can be seen as a follow-up to Ref. [21],
which originally proposed to replace the dimension
bound in semi-device-independent scenarios by the
information bound Pg(X|B) ≤ G (or I(X|B) ≤ α)
considered here. However, [21] implicitly modelled
the correlations established between Alice and Bob as
statistical mixtures

p(b|x, y) =
∑
λ

p(λ)pλ(b|x, y) (7)

of correlations pλ(b|x, y) obtained by measuring pure
states:

pλ(b|x, y) = 〈ψ(λ)
x |M

(λ)
b|y |ψ

(λ)
x 〉. (8)

The guessing probability constraining the communi-
cation was then defined as the following averaged
quantity over the classical shared variable λ:

Pg(X|B) =
∑
λ

p(λ) max
{N(λ)

x }x

∑
x

qx〈ψ(λ)
x |N (λ)

x |ψ(λ)
x 〉.

(9)
Similarly, in the classical case, the correlations be-
tween Alice and Bob were modelled as statistical mix-
tures of correlations

pλ(b|x, y) =
∑
m

δ(m,m(λ)
x ) pλ(b|y,m) , (10)

established by sending deterministic messages m(λ)
x

for given x and λ.
The sets of such pure state correlations, in the

quantum case, or deterministic correlations, in the
classical case, compatible with a given communica-
tion constraint Pg(X|B) ≤ G are easily seen to be
particular subcases of the more general correlations
that we consider here. Indeed, they can be obtained
by assuming the states and measurements in (1) to
take the following specific forms

ρx =
∑
λ

p(λ) |λ〉〈λ| ⊗ |ψ(λ)
x 〉〈ψ(λ)

x |, (11)

Mb|y =
∑
λ

|λ〉〈λ| ⊗M (λ)
b|y (12)

in the quantum case, and

ρx =
∑
λ,m

p(λ)pλ(m|x) |λ〉〈λ| ⊗ |m〉〈m|, (13)

Mb|y =
∑
λ,m

p(λ)pλ(b|y,m) |λ〉〈λ| ⊗ |m〉〈m| (14)

in the classical case, which recovers both the convex
sum (7) and the average guessing probability (9). In-
terestingly, while in more traditional works on corre-
lations, such as in the study of Bell nonlocality [26],
statistical mixtures of pure states (or of deterministic
correlations) generate the full set of correlations, they
only represent a proper subset of the possible corre-
lations in our information-restricted setting. This is
because given a set of arbitrary states ρx satisfying the
information constraint Pg(X|B) ≤ G, one can gener-
ally not re-interpret them as a mixtures of pure states
without increasing their distinguishability, hence po-
tentially violating the condition Pg(X|B) ≤ G.

The formulation we consider here is fully general
and does not make any implicit assumption on the
structures of the states appearing in the definition (1).
Throughout the paper, we will compare our results to
those that would be obtained under the pure-state
approach of [21] in order to illustrate the differences
in the two formulations.

2 Basic properties and simple scenar-
ios
In the following, we refer to the prepare-and-measure
scenario of Fig. 1, with nX inputs for Alice, nY inputs
for Bob, and nB outputs, as a (nX , nY , nB)-scenario.
Given an information bound specified by a probabil-
ity distribution qx and a number G ∈ [maxx{qx}, 1],
we denote by Q the set of quantum correlations com-
patible with that information bound, i.e., the set of
probability distributions p(b|x, y) for which there ex-
ist states ρx and measurement operatorsMb|y defined
on some Hilbert space of arbitrary dimension d that
satisfy the Born rule (1) and the constraint (4). Sim-
ilarly, C denotes the set of classical correlations, i.e.,
satisfying in addition (2)–(3). By plugging this spe-
cific form for the states and measurements in (1) and
(4), classical correlations can also be defined as those
that can be written as

p(b|x, y) =
∑
m

p(m|x)p(b|y,m) (15)

and satisfying the information constraint

Pg(X|B) =
∑
m

max
x

qxp(m|x) ≤ G, (16)

since the optimal POVM {Nx} in this case is the one
that reads the classical message m and outputs the
value x that maximises qxp(m|x).

The sets Q and C are easily seen to be convex, using
a construction akin to (11) and (12). That is, we can
without loss of generality assume that the states sent
by Alice and the measurements performed by Bob de-
pend on some shared randomness λ (independent of
x).
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As a consequence, when writing the correlations ex-
plicitly as a convex sum (7), we can without loss of
generality assume Bob’s measurements to be extremal
conditioned on λ: if the measurements of Bob depend
on some local randomness, we can always incorporate
it instead in the shared randomness λ. In the clas-
sical case C, this means that we can without loss of
generality assume Bob’s classical response pλ(b|y,m)
to be deterministic, i.e., such that pλ(b|y,m) ∈ {0, 1}.
However, as noted earlier, we cannot without loss of
generality assume the states to be pure (or determin-
istic in the classical case) when conditioned on λ as
rewriting a mixed-state as a convex combination of
pure states could violate the original guessing proba-
bility bound.

The sets Q and C satisfy certain basic inequalities.
Obviously, since the p(b|x, y) are probabilities, they
must by definition satisfy the positivity and normali-
sation conditions

p(b|x, y) ≥ 0, ∀b, x, y (17)

and ∑
b

p(b|x, y) = 1, ∀x, y. (18)

In addition, since post-processing cannot improve the
distinguishability between messages and since all mea-
surements {Mb|y}b of Bob can be viewed as (typically
suboptimal) information-extraction POVMs, it holds
that ∑

b

max
x

qxp(b|x, y) ≤ G, ∀y, (19)

since, as in (16), when Bob gets the result b when
he performs the measurement corresponding to in-
put y, his best guess of x is the value that max-
imises qxp(b|x, y). This last constraint can explicitly
be rewritten as a series of linear inequalities∑
b

qxbp(b|xb, y) ≤ G, ∀y, ∀x = (x1, x2, . . . , xnB ) (20)

where x = (x1, x2, . . . , xnB ) ∈ {1, . . . , nX}×nB as-
signs to each output b a value xb.

We remark that, though it is harmless to specify
them, not all of the inequalities (20) are always rel-
evant as they may already be implied by normalisa-
tion and positivity of the probabilities alone (as well
potentially as constraints specific to C and Q). Pre-
cisely which ones are redundant depends on the upper
bound G chosen. The instances with all the compo-
nents of x equal (x1 = x2 = · · · = xnB ) in partic-
ular are always redundant as the left side of (20) is
in these cases always upper bounded by the small-
est possible value, maxx{qx}, of the guessing prob-
ability. At the opposite extreme, (19) always be-
comes redundant entirely for sufficiently high G when
Alice’s device has more inputs than Bob’s has out-
comes. This, supposing we label Alice’s inputs so that

q1 ≥ q2 ≥ · · · ≥ qnX , is because the left side of (19) is
also always bounded by∑

b

max
x

qxp(b|x, y) ≤
nB∑
x=1

qx, (21)

which is strictly less than one if Alice has more than
nB inputs that are used with nonzero probability.

The set of correlations satisfying Eqs. (17), (18),
and (19) is a polytope G. The polytope G can be
interpreted as the set of correlations attainable un-
der informational restrictions when no assumption is
made on the underlying physical theory. Therefore,
recalling also that the classical set is contained in the
quantum set, we have the inclusions C ⊆ Q ⊆ G.

An important first step in semi-device-independent
approaches is to establish that one can distinguish
between classical and quantum correlations, i.e., that
C ⊂ Q. We show here below that in the simplest case
of communication experiments with only two inputs
on Alice (nX = 2), the classical, quantum and theory-
independent sets are identical (C = Q = G). Notably,
this stands in contrast to other established approaches
to semi-device-independence [17, 18]. Later, we will
find that C ⊂ Q indeed is possible when Alice has
more than two inputs. In sections 3 and 4 we describe
how to characterise the classical set and quantum set,
respectively, in a general and systematic manner.

2.1 C = Q = G when Alice has nX = 2 inputs
We show that for nX = 2 it holds that C = Q = G
by proving that every p(b|x, y) ∈ G admits a clas-
sical model. To this end, note that the constraints
Eqs. (17)–(19) are decoupled with respect to y. In
other words, for each individual value of y, we obtain
a separate polytope and the full set of probabilities is
just the Cartesian product of the nY identical poly-
topes corresponding to the individual values of y. We
derive the vertices of these polytopes in Appendix A.
For nB = 3 (which is representative), up to permuta-
tions of Bob’s outputs they are

v1(y) =
(

1 0 0
1 0 0

)
, (22)

v2(y) =
(

1 0 0
1−G
q2

1− 1−G
q2

0

)
, (23)

v3(y) =
( 1−G

q1
1− 1−G

q1
0

1 0 0

)
, (24)

v4(y) =
(

1−G
q1

1− 1−G
q1

0
1−G
q2

0 1− 1−G
q2

)
, (25)

where we use a matrix notation

vj(y) =
(
p(1|1, y) p(2|1, y) · · ·
p(1|2, y) p(2|2, y) · · ·

)
(26)

to summarise the probabilities p(b|x, y) defining each
vertex vj . The vertices for nB 6= 3 are trivial varia-
tions of those above: for nB > 3 the vertices are the
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same except with additional columns of zeros while
for nB < 3 we simply discard the vertices that have
more than nB columns with nonzero entries in them.

Crucially, all the vertices v1(y)–v4(y), including all
their permutations, can be generated by performing
different measurements on the same two commuting
(classical) states

ρ1 = 1−G
q1
|0〉〈0|+

(
1− 1−G

q1

)
|1〉〈1|, (27)

ρ2 = 1−G
q2
|0〉〈0|+

(
1− 1−G

q2

)
|2〉〈2|. (28)

For example, the vertex v3(y) is obtained by measur-
ing {Mb|y} with

M1|y = |0〉〈0|+ |2〉〈2|, (29)
M2|y = |1〉〈1|, (30)
M3|y = 0. (31)

Furthermore, any convex mixtures of vertices of the
kind above, which is to say, any probability p(b|x, y)
satisfying the conditions (17)–(19) above, can be gen-
erated by performing the corresponding convex mix-
tures of POVMs on Bob’s side. We conclude that
Eqs. (17), (18), and (19) completely characterise both
C, Q and G.

2.2 Inequivalence of general correlations and
pure-state correlations
Following [21], we denote by Qpure ⊆ Q the subset
of Q consisting of convex combination of pure-state
correlations (8) and Cdet ⊆ C the subset of C consist-
ing of convex combinations of deterministic classical
correlations (10). As we show below, already for the
simplest communication scenario (nX = 2), we can
distinguish between Q and Qpure as well as between C
and Cdet, i.e., Qpure ⊂ Q and Cdet ⊂ C. Note, though,
that the relation between Qpure and C is more com-
plex. We will see that in the simple scenario below
that Qpure ⊂ C. But in other scenarios one can have
correlations in Qpure that are outside C so that the
two sets intersect, but none is strictly contained in
the other. This justifies looking at the larger quan-
tum set Q, which by definition always satisfies C ⊆ Q
and thus can never be outperformed using classical
correlations.

Before looking at the general nX = 2 case, let us
first consider the exceptional situation that Alice’s in-
puts are equiprobable (q1 = q2 = 1/2). The states
(27) and (28) become

ρ1 = 2(1−G)|0〉〈0|+ (2G− 1)|1〉〈1|, (32)
ρ2 = 2(1−G)|0〉〈0|+ (2G− 1)|2〉〈2|. (33)

Consider now a deterministic classical strategy with
one bit of shared randomness. Specifically, Alice re-
ceives either λ = 1 with probability p(1) = 2(1−G) or

λ = 2 with probability p(2) = 2G− 1. If λ = 1 Alice
prepares the state |0〉〈0|, while if λ = 2 Alice prepares
the state |x〉〈x| depending on her input x ∈ {1, 2}.
This strategy generates the same states as (32) and
(33) on average and the average guessing probability
is still G. Thus, all correlations in G can be obtained
and one finds no difference between the various sets:
Cdet = C = Qpure = Q = G.

In contrast, whenever the prior is biased (q1 6= q2),
we find that the pure-state correlations and the gen-
eral correlations are inequivalent (see Fig. 2). Consid-
ering the scenario (nX , nY , nB) = (2, 1, 2), the corre-
lations can be characterised in terms of the expecta-
tion values

Ex = p(1|x)− p(2|x) (34)

for x = 1, 2, where we have omitted y due to its fixed
value. In Appendix B, we show that the nontrivial
facets of C and Q are

|q1E1 − q2E2| ≤ 2G− 1, (35)

in terms of the guessing probability bound G. The
facets of Cdet are likewise straightforward to derive due
to the small number of possible deterministic strate-
gies. We do this in Appendix B and find that the
nontrivial facets are

|E1 − E2| ≤ 2G− qmax

qmin
, (36)

where qmax = max(q1, q2) and qmin = min(q1, q2).
Whenever q1 6= q2 this bounds a strictly smaller set
than (35).

Finally, we derive the exact boundaries of the set
Qpure in Appendix B. Unlike the classical sets and Q,
this set is not a polytope. Aside from the trivial con-
straints |Ex| ≤ 1, it is bounded by an infinite family,

|c1E1 − c2E2| ≤
√

1− 4c1c2
q1q2

G(1−G), (37)

of linear inequalities, for parameters c1 and c2 satis-
fying c1 + c2 = 1 in the range qmin ≤ c1, c2 ≤ qmax.
This set is larger than Cdet but smaller than C and
Q. Note that at the extreme c1 = q1, (37) reduces to
(35). Hence, two flat parts of the boundary of Qpure
(see Fig. 2) coincide with the nontrivial facets of Q.

3 Characterising classical correlations
In this section, we explain how one can systematically
determine the boundaries of the classical set C, which
is a polytope; the characterisation of the deterministic
set Cdet was already addressed in [21]. We then ap-
ply our method to explicitly derive the boundaries of
C in the (3, 2, 2) scenario assuming Alice’s inputs are
chosen equiprobably, finding that C is strictly larger
than Cdet in this case. This differs from the case with
two inputs considered earlier, where C and Cdet were
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−1 0 1

−1

0

1

E2

E1

C,Q
Qpure

Cdet

Figure 2: Informationally restricted correlations in the
(2, 1, 2) scenario with prior probabilities (q1, q2) = (0.6, 0.4)
and a bound G = 3/4 on the guessing probability (corre-
sponding to I(X|B) ≤ log2(5)−2 bits of information). The
possible correlations are illustrated for deterministic classi-
cal strategies (magenta), deterministic quantum strategies
(blue) and for classical and quantum stochastic strategies
(green), which are the same in this case.

only found to be different when Alice’s inputs are not
equiprobable. Finally we also point out how one can,
alternatively, generally test by linear programming
whether a correlation is in C or not without explic-
itly needing to determine its boundaries.

3.1 Identifying the boundaries of C
3.1.1 General method

The classical set C is, as mentioned above and as we
have seen explicitly for nX = 2 in the previous sec-
tion, a polytope and we could in principle characterise
it by determining its facets for any given upper bound
G on the guessing probability. This direct approach
would, however, require us to rederive the facets of C
for each value of G that we may be interested in. To
avoid this we instead consider a related but different
set, which we call C+, of possible pairs

(
p(b|x, y), G

)
of

probability distributions p(b|x, y) and guessing prob-
ability bounds G that are compatible with (15) and
(16), which we repeat here for convenience:

p(b|x, y) =
∑
m

p(m|x)p(b|y,m), (38)

G ≥
∑
m

max
x

qxp(m|x). (39)

Casting the problem in this way allows us to derive
the boundaries of the classical set while leaving G as
a free variable.

The set C+ is clearly convex, as it is easily seen
that

(
q p1(b|x, y)+(1−q) p2(b|x, y), q G1 +(1−q)G2

)
belongs to it if (p1(b|x, y), G1) and (p2(b|x, y), G2) do.
To characterise it, it is thus sufficient to characterise
its extreme points and take their convex hull.

As explained at the beginning of Section 2, remem-
ber that the extremal points of C have deterministic
response probabilities for Bob: p(b|y,m) ∈ {0, 1}. If
we fix such a deterministic response for Bob, the prob-
abilities p(b|x, y) are then entirely determined by the
probability distribution p(m|x) of Alice’s messages.
Those are simply constrained by

G−
∑
m

max
x

qxp(m|x) ≥ 0, (40)

p(m|x) ≥ 0, (41)∑
m

p(m|x) = 1, (42)

which represents a finite set of linear inequalities for
the set M+ of possible pairs

(
p(m|x), G

)
of message

probabilities and guessing probability bounds. The
set M+ is thus a polyhedron, i.e., an object like a
polytope except that it is not necessarily bounded3.
Explicitly, this is a set P = {p} of points that can be
generated from a finite number of vertices vi ∈ V and
conic generators wj ∈ W, i.e,

P = Conv(V) + Cone(W) (43)

or, more explicitly, the set of points {p} that can be
expressed as

p =
∑
i

λivi +
∑
j

µjwj (44)

with λi, µj ≥ 0,
∑
i

λi = 1. (45)

Provided that the number of possible messages m
is limited to a finite number, the vertices and conic
generators of M+ can be determined using software
such as PORTA or PANDA [27]. In Appendix C
we prove that every pair

(
pλ(b|x, y), Gλ

)
can be con-

structed with a message of size 2nX−1 without loss of
generality. In practice, however, the number of nec-
essary messages may be considerably less than this in
general: in cases with two or three inputs where we
explicitly determined the vertices we never found that
the number of necessary different messages exceeded
the number of inputs nX .

Once the vertices and conic generators
(
p(m|x), G

)
of M+ have been obtained, one can generate all ex-
treme points

(
p(b|x, y), G

)
of C+ using (38) for each

of the finite number of possible deterministic distri-
butions p(b|y,m) for Bob. We thus find that C+ is

3The set is not closed because the number G that we impose
as an upper bound on the guessing probability is in principle
unbounded. We could, of course, simply choose to impose a
bound on it, such as G ≤ 1. In that case, the set would become
a (closed) polytope.
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described by a finite number of vertices and conic gen-
erators, i.e., it is a polyhedron. Solving the facet enu-
meration problem, which again can be done in soft-
ware provided that the problem is not too large, yields
a finite number of inequalities that completely charac-
terises the set of points

(
p(b|x, y), G

)
compatible with

classical stochastic communication.

3.1.2 Boundaries of C in the (3,2,2) scenario

We found earlier, in Section 2.2, that the classical
stochastic and deterministic sets C and Cdet are always
the same if Alice has two equiprobable inputs. The
(3, 2, 2) setting is therefore the smallest in which we
could hope to find that C and Cdet are different even if
Alice’s inputs are chosen with the same probabilities
(qx = 1/3). This is indeed what we find for certain
values of the upper bound G that we impose on the
guessing probability.

We applied the method we described in the previ-
ous subsection to find the facets of C+ in the (3, 2, 2)
setting with qx = 1/3. In terms of the correlators
Exy = p(1|x, y) − p(2|x, y), in addition to the trivial
conditions ±Exy ≤ 1 and G ≥ 1/3 its facets, up to
relabellings of the inputs and outputs, are

−E11 − E12 − E21 + E22 + E31 ≤ 6G− 1, (46)
−E11 + E31 ≤ 6G− 2. (47)

For comparison, the facets of the deterministic version
of the set, which we could call C+

det, are
4

−E11 − E12 − E21 + E22 + E31 ≤ 6G− 1, (48)
−E11 − E12 − E21 + E22 + 2E31 ≤ 12G− 4, (49)

−E11 + E31 ≤ 6G− 2. (50)

We see here that C+ and C+
det share two nontrivial

classes of facets. Of these, (47) and (50), which we
can rewrite as

1
3p(1|31) + 1

3p(2|11) ≤ G, (51)

are instances of the constraints (20) that we pointed
out apply regardless of the underlying physical theory
in Section 2. They are not always facets of the sets C
and Cdet with G fixed due to Alice having more inputs
than Bob has outputs in this setting: in particular
they become redundant if G is larger than 2/3. The
other boundary (46) and (48) common to the two sets,
by contrast, is a nontrivial facet of both C and Cdet
for all 1/3 ≤ G ≤ 1.

The only difference between the stochastic and de-
terministic classical sets is the class of boundaries (49)

4Ref. [21] originally inferred these boundaries by deriving
the facets of Cdet for multiple fixed values of G between 1/3 and
1. We rederived them here following the analogue of the method
of the previous subsection applied to deterministic communica-
tion, treating G as a free variable. This confirms conclusively
that the boundaries hold for all values of G.

unique to Cdet. Eq. (49) nontrivially constrains the
correlations for any G < 5/6 but becomes redundant
for G ≥ 5/6. This tells us that C and Cdet coincide if
G ≥ 5/6 but that Cdet is a strictly smaller set than C
for G < 5/6 in the (3, 2, 2) setting with equiprobable
priors.

3.2 Membership testing by linear programming
While knowing the boundaries of C is useful for cer-
tain purposes, it is possible to solve the basic prob-
lem of testing for membership in C without explicitly
needing to derive its boundaries. Given a bound G
on the guessing probability, determining whether or
not a given behaviour p(b|x, y) is contained in the
corresponding classical set C is equivalent to deter-
mining whether the pair

(
p(b|x, y), G

)
is contained in

the set C+ that we introduced in the previous subsec-
tion. This amounts to determining whether p(b|x, y)
and G can respectively be expressed as and bounded5

by averages

p(b|x, y) =
∑
λ

p(λ)pλ(b|x, y), (52)

G ≥
∑
λ

p(λ)Gλ (53)

of the respective components of vertices(
pλ(b|x, y), Gλ

)
of C+.

Recalling how we generate the vertices of C+ from
those ofM+ in the previous subsection, we may sub-
stitute every vertex probability pλ(b|x, y) in (52) by

pλ(b|x, y) =
∑
m

pλ(m|x)pλ(b|y,m) (54)

where pλ(m|x) is a vertex probability of M+ and
pλ(b|y,m) is a deterministic response function. Fur-
thermore, we may limit the number of messages to
an alphabet of size nM = 2nX−1 without loss of gen-
erality. This allows us to express the problem above
as

p(b|x, y) =
∑
λ,m

p(λ)pλ(m|x)pλ(b|y,m), (55)

G ≥
∑
λ

p(λ)Gλ, (56)

with pλ(b|y, x) ∈ {0, 1} and where
(
pλ(m|x), Gλ

)
is a

vertex ofM+, for all λ.
There are a finite number nK = nnM ·nYB of possible

deterministic response functions on Bob’s side. Let
us denote these pk(b|y,m), identified by an index k
taking one of nnM ·nYB distinct values, and group the

5If we follow the exact formulation in the previous subsec-
tion then, as we point out in Appendix C, C+ has one conic
generator

(
p(b|x, y), G

)
= (0, 1) in addition to its vertices which

can be added to any point in C+ to increase its guessing prob-
ability bound component. Eliminating this conic generator re-
sults in (53) being an inequality.

Accepted in Quantum 2021-12-31, click title to verify. Published under CC-BY 4.0. 7



remaining terms by k. Defining Λk as the set of λs
appearing in the problem above for which

pλ(b|y,m) = pk(b|y,m), (57)

we can rewrite our problem as

p(b|x, y) =
∑
k,m

p(k)pk(m|x)pk(b|y,m), (58)

G ≥
∑
k

p(k)Gk (59)

where

p(k) =
∑
λ∈Λk

p(λ), (60)

pk(m|x) =
∑
λ∈Λk

p(λ|k)pλ(m|x), (61)

Gk =
∑
λ∈Λk

p(λ|k)Gλ, (62)

and p(λ|k) is defined in such a way that p(k)p(λ|k) =
p(λ).

The reexpression (58) and (59) of our problem is
superficially the same as (55) and (56) except that
now there is a known finite number of the indices k
and m, while the pairs

(
pk(m|x), Gk

)
are no longer

necessarily vertices of M+. The
(
pk(m|x), Gk

)
s are

still necessarily contained inM+, however, sinceM+

is convex, and thus by definition satisfy

Gk ≥
∑
m

max
x

qxpk(m|x) (63)

together with

pk(m|x) ≥ 0,
∑
k

pk(m|x) = 1. (64)

Using these constraints in place of (61) and (62) and
then eliminating the Gks simplifies the problem to

p(b|x, y) =
∑
k,m

p(k)pk(m|x)pk(b|y,m), (65)

G ≥
∑
k,m

p(k) max
x

qxpk(m|x), (66)

where p(k) and pk(m|x) are probability distributions.
To turn this into a linear programming problem we

combine p(k) and pk(m|x) into a joint distribution,

p(k,m|x) = p(k)pk(m|x), (67)

which satisfies the marginal condition that∑
m p(k,m|x) = pk is independent of x for all

k. With this last replacement the full problem

becomes

p(b|x, y) =
∑
k,m

p(k,m|x)pk(b|y,m), (68)

G ≥
∑
k,m

max
x

qxp(k,m|x), (69)

p(k,m|x) ≥ 0, (70)∑
k,m

p(k,m|x) = 1, (71)∑
m

p(k,m|x) =
∑
m

p(k,m|x′), ∀x 6= x′. (72)

Recalling that (69) is a shorthand for nnBM linear in-
equalities, determining whether there exist nK · nM ·
nX weights p(k,m|x) that satisfy Eqs. (68)–(72) for
a given behaviour p(b|x, y) is a linear programming
feasibility problem.

We remark, finally, that if we drop the marginal
constraint (72) and combine (k,m) into a new vari-
able which we rename m, we recover the definition of
the classical set C that we started with in Section 2.
This confirms that we did not inadvertently relax the
problem when we replaced the vertices

(
pλ(m|x), Gλ

)
ofM+ with the conditions (63) and (64) on pk(m|x).
Deriving the linear programming feasibility problem
following our characterisation of C+, however, allows
us to put a finite upper limit nK · nM · nX , with
nK = nnM ·nYB and nM = 2nX−1, on the number of
weights p(k,m|x) that we need to consider.

4 Characterising quantum correlations
In this section, we develop tools for the characteri-
sation of informationally restricted quantum correla-
tions. In Section 4.1, we develop an efficient method
for optimising any given linear witness from inside
the set of informationally restricted quantum corre-
lations Q. Hence, this method enables lower bounds
on quantum correlations. In Section 4.2, we present
a hierarchy of semidefinite relaxations of Q (and of
Qpure). This allows us to establish increasingly pre-
cise necessary criteria of a given correlation admit-
ting a quantum model. In Section 4.3, we apply these
methods to the simplest relevant communication ex-
periment and use it to device-independently quantify
the information content of a quantum ensemble. In
Section 4.4, we focus on the case of one bit of in-
formation and prove several strict resource inequali-
ties involving two-dimensional systems, pure-state in-
formationally restricted systems and general informa-
tionally restricted systems, in both the quantum and
classical setting.

4.1 Lower bounds: alternating convex search
method
In many situations arising in the study of quantum
correlations, it is possible to use alternating convex
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searches in order to optimise a linear functional of
the quantum correlations (a linear “witness”), such
as in the case of Bell inequalities [28, 29] or quan-
tum dimension witnesses [30]. Such a search amounts
to attempting to solve the full optimisation problem
(over both states and measurements) by repeatedly
optimising over the states and measurements sepa-
rately in an alternating manner. The advantage of
such an approach is that often each separate optimi-
sation, over states (measurements) for fixed measure-
ments (states), is convex and can be solved by stan-
dard methods. While alternating convex search often
works well in practice, it is not guaranteed to converge
and therefore only offers lower bounds on the optimal
quantum correlations.

In order to optimise a linear witness over the set of
informationally restricted quantum correlations, one
encounters a less straightforward situation. For a
fixed set of states, it is clear that the optimisation
over the set of measurements can be evaluated as a
semidefinite program (SDP). In contrast, for a fixed
set of measurements, the optimisation over the set
of states is less obvious due to the relevance of the
informational restriction. Evidently, the optimisa-
tion must be performed under the constraint Pg ≤ G
which itself involves a maximisation over the extrac-
tion POVM {Nx}x. We show how this difficulty
can be overcome so that lower bounds on informa-
tionally restricted quantum correlations can be ef-
ficiently computed through alternating implementa-
tions of SDPs.

Consider that we are given a linear witness A, in
general written as

A =
∑
x,y,b

cxybp(b|x, y) =
∑
x,y,b

cxyb Tr
[
ρxMb|y

]
(73)

for some real coefficients cxyb, and asked to maximise
it over the set of informationally restricted states ρx
and measurements Mb|y. For this purpose, let us de-
fine an auxiliary positive semidefinite operator σ with
the property that

∀x : σ ≥ qxρx. (74)

This allows us to place the following upper bound on
the guessing probability:

Pg(X|B) = max
{Nx}x

∑
x

qx Tr
[
ρxNx

]
≤ max
{Nx}x

∑
x

Tr
[
σNx

]
= Tr[σ], (75)

where we have used that
∑
xNx = 1. The intro-

duction of σ stems from considering the semidefinite
dual of the guessing probability and does therefore not
constitute a relaxation of the problem [31]. Its advan-
tage is that it allows us to treat the informational re-
striction as a tracial constraint enforced through the
additional semidefinite constraints in (74). We may

therefore cast the maximisation of the linear witness
A, for a given bound G on the guessing probability,
as the following optimisation problem:

max
ρx,σ,Mb|y

∑
x,y,b

cxyb Tr
[
ρxMb|y

]
such that ρx ≥ 0, Tr[ρx] = 1,

σ ≥ qxρx, Tr[σ] ≤ G,
Mb|y ≥ 0,

∑
b

Mb|y = 1. (76)

If we fix the measurement operators {Mb|y}, this
problem becomes an SDP for the states {ρx} and σ.
Conversely, if we fix the states {ρx} and σ, it is an
SDP for the measurement operators {Mb|y}. We can
thus alternate these SDPs to obtain a lower bound on
the optimal value. Note that it is implicit that these
SDPs must be performed in a given Hilbert space di-
mension, but one may find successively better lower
bounds by increasing the dimension. The usefulness
of this method is exemplified in Section 4.3.

Note that the above approach cannot be applied to
the pure-state set Qpure, since the condition ρx ≥ 0
would have to be replaced by ρ2

x = ρx, which is non-
linear. The existence of a practical algorithm lower-
bounding the general quantum set Q is another ad-
vantage of our general formulation.

4.2 Upper bounds: hierarchy of semidefinite
relaxations
The idea used in the previous section, of introduc-
ing the auxiliary operator σ, can be further lever-
aged to systematically obtain increasingly precise up-
per bounds on the informationally restricted set of
quantum correlations. We now present a hierarchy
of semidefinite relaxations for the set Q, which is
based on the tracial variant [32, 33] of the NPA
non-commutative polynomial optimisation hierarchy
[34, 35].

Let us first slightly rewrite the problem (76) as

max
ρx,σ,Mb|y

∑
x,y,b

cxyb Tr
[
ρxMb|y

]
such that ρx − ρ2

x ≥ 0, Tr[ρx] = 1,
σ − qxρx ≥ 0, G1− σ ≥ 0, Tr[σ] ≤ G,
Mb|yMb′|y = δbb′Mb|y,

∑
b

Mb|y = 1, (77)

where compared with (76), we have replaced the con-
straint ρx ≥ 0 by ρx − ρ2

x ≥ 0, added the redundant
constraint G1 − σ ≥ 0, and assumed, without loss
of generality if we do not bound the dimension d of
the Hilbert space, that the measurements {Mb|y}b are
projective. The optimization problems (76) and (77)
are entirely equivalent, but the second formulation is
better suited for the tracial non-commutative opti-
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mization method of [32]6, which we now explain how
to apply.

Let w denote a monomial, i.e. a product, of the
nX + 1 + nBnY basic operators ρ1, ρ2, . . . , ρnX , σ,
and M1,1, . . . ,MnB |1,M1|2, . . . ,MnB |nY . We refer to
the number k of such basic operators in the product
w as the degree k of this monomial. By convention,
the identity operator 1 is the monomial of degree 0.
Let Wk denote the set of all monomials of degree at
most k and let n(k) denote the number of such mono-
mials. Linear combinations p =

∑
w∈Wk

αww of the
monomials then correspond to polynomials of degree
k in the basic operators.

Let L be a linear functional that assigns to each
monomial w in W2k of degree 2k the real number
L(w), and thus which assigns to each polynomial
p =

∑
W∈W2k

αww of degree 2k the real number
L(p) =

∑
w∈Wk

αwL(w). Given such a functional L,
we define

• the moment matrix Γk(L), as the matrix of size
n(k) whose entries are indexed by monomials
u, v ∈ Wk and are equal to [Γk(L)]u,v = L(u†v);

• the localizing matrix Γk(L; p) associated to a
polynomial p of degree two or less, as the ma-
trix of size n(k) − 1 whose entries are indexed
by monomials u, v ∈ Wk−1 and are equal to
[Γk(L; p)]u,v = L(u†p v).

Consider now the following problem for k ≥ 1,

max
L

∑
x,y,b

cxyb L
(
ρxMb|y

)
such that Γk(L) ≥ 0,

Γk(L; ρx − ρ2
x) ≥ 0, L(ρx) = 1,

Γk(L;σ − qxρx) ≥ 0, Γk(L;G1− σ) ≥ 0,
L(σ) ≤ G,

L(p) = L(p′), if Tr[p] = Tr[p′] (78)
for any polynomials p, p′ of degree 2k,

where in the last condition the identity Tr[p] = Tr[p′]
is evaluated by taking into account the polynomial
identities Mb|yMb′|y = δbb′Mb|y and

∑
bMb|y = 1 sat-

isfied by the measurement operators. This optimiza-
tion problem is an SDP (since it amounts to optimize
n(2k) variables, the values L(w) of the monomials w
of degree less than 2k, subject to linear constraints
and to the positivity of matrices whose entries are
linearly related to these variables).

6Specifically, the constraints ρx − ρ2
x imply not only that

ρx ≥ 0 but also that ρx ≤ 1. Together with the constraint
σ ≤ G1 this guarantees that the feasible set of (77) satis-
fies the archimedean assumption and that the entries of the
moment matrices stay bounded. Assuming that the measure-
ments are projectives instead of general POVMs dispenses us
from introducing localizing matrices associated with them.

Clearly any solution of (77) defines a solution of
(78) through L(w) = Tr[w] 7. Thus the problem (78)
represents an SDP relaxation of (77) approximating
the set Q from the outside. By increasing the relax-
ation level k, one obtains a hierarchy of increasingly
constraining conditions on Q.

Note that the above method can also be used to
characterise the set of pure-state quantum correla-
tions Qpure by replacing in (76) the positivity con-
straints ρx − ρ2

x ≥ 0 by the polynomial constraints
ρx = ρ2

x, resulting in the simpler relaxation

max
L

∑
x,y,b

cxyb L
(
ρxMb|y

)
such that Γk(L) ≥ 0,

ΓL(ρx) = 1,
Γk(L;σ − qxρx) ≥ 0, Γk(L;G1− σ) ≥ 0,
L(σ) ≤ G,

L(p) = L(p′), if Tr[p] = Tr[p′] (79)
for any polynomials p, p′ of degree 2k,

where the last condition is evaluated using, in addition
to the polynomial constraints on the measurement op-
erators, the conditions ρx = ρ2

x.
We remark that by additionally imposing that all

operators commute, we can also bound classical cor-
relations via the above SDPs. This can be useful in
scenarios that are too large to be efficiently treated
with the methods developed in Section 3.

Finally, let us stress that the series of SDP relax-
ations that we introduced are relaxations. Conver-
gence to the exact quantum set is not guaranteed in
the limit k → ∞, see [32, 33, 36] for more details
about the general properties of the SDP hieararchy
for non-commutative tracial optimization.

4.3 Device-independent witnessing of the in-
formation content of quantum communication
Consider a quantum communication experiment in
which we do not know the amount of information
communicated from Alice to Bob. Is it possible to
determine a lower bound on the amount of informa-
tion that Alice must send to Bob given only the ob-
served correlations p(b|x, y)? This amounts to the
task of device-independently testing the information
content of quantum communication. Using the tools
of the previous sections, we exemplify such device-
independent certification in the simplest relevant com-
munication experiment.

As we have seen in Section 2.1, there can be no
quantum advantage when the scenario only features
two states. Moreover, no advantage is possible when

7This can be seen by following the same lines as in [34,
35], where the linear functional was instead defined as L(w) =
〈Ψ|w|Ψ〉 for some reference state |Ψ〉.
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Bob only has a single input, because his measure-
ment could then be performed already in Alice’s lab
and the outcomes simply relayed to Bob as classical
communication (since performing a measurement can-
not increase the guessing probability). Therefore, the
simplest relevant scenario in which we expect a quan-
tum advantages is that in which Alice has three states
(nX = 3) and Bob has two binary-outcome measure-
ments (nY = nB = 2). In this scenario, we focus
on the linear witness (46) (here labelled A322) cor-
responding to a facet of the classical polytope under
uniform priors (qx = 1/3).

Firstly, we apply the SDP hierarchy for the set
Qpure to find upper bounds on A322 as a function
of the guessing probability (information). We imple-
mented the SDP relaxation (79) with k = 3 but to
simplify the numerical optimisation considered a sub-
set of all SDP and linear constraints. Specifically, we
only imposed the positivity of the submatrix of Γ3(L)
whose rows and columns are indexed by the monomi-
als

{1, σ, ρ, M, ρM, ρρ, MM, ρσ, Mσ, ρρρ,

MMσ, ρMM, ρMσ, ρMρ}, (80)

the positivity of the submatrices Σx2(L) whose rows
and columns are indexed by the monomials

{1, ρ, M, ρρ, MM, ρM}, (81)

and the linear constraints L(P ) = L(P ′) involving
the entries of such matrices. This corresponds to a
98× 98 moment submatrix Γ and three 25× 25 local-
ising submatrices Σx. Evaluating the corresponding
SDPs for different informational restrictions, we ob-
tain the red curve illustrated in Fig. 3. Notably, this
upper bound is in fact tight, since it coincides with
the explicit pure-state quantum strategy reported in
Ref. [21] (thus proving its optimality).

Similarly, we have also implemented the SDP hi-
erarchy for the general quantum set Q using subma-
trices of the localising matrices P x3 (L) based on the
same monomial list (81) as for Σx3(L). The obtained
bounds on the witness are given by the blue curve in
Fig. 3. We observe that for every guessing probability
Pg ∈ ( 1

3 , 1)\{2
3} we find a larger bound in the general

setting as compared to the pure-state setting. In order
to show that this gap is not an artefact of the bounds
in the general setting not being tight, we have em-
ployed the alternating convex search described in Sec-
tion 4.1 to construct explicit quantum models. The
obtained values of the witness are illustrated by the
black curve in Fig. 3. We find that for Pg ∈ [ 1

3 ,
2
3 ], the

upper and lower bounds in the general setting accu-
rately coincide. In the interval Pg ∈ ( 2

3 , 1) a small gap
between the upper and lower bound remains. Never-
theless, our lower bounds exceed the upper bounds for
the pure-state setting, thus proving that information-
ally restricted quantum correlations outperform their

Pure
quan

tum

Super-quantum

Classical
stochastic & deterministic

0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

Information (guessing probability)

A
3
2
2

Figure 3: The witness A322 versus the information (in terms
of the guessing probability). The plot displays an upper
bound (blue) and lower bound (black) on general quantum
models, a tight upper bound on pure-state quantum models
(red) and a tight upper bound on classical models (green). As
the first two curves coincide in the interval Pg ∈ [ 1

3 ,
2
3 ], this

part of the quantum boundary is fully characterised. How-
ever, in the interval Pg ∈ ( 2

3 , 1], the quantum boundary is
not fully characterised but delimited by the blue and black
curves.

pure-state counterparts. It is interesting to note that
for the special case of Pg = 2

3 , which corresponds pre-
cisely to I(X|B) = 1 bit of information, there is no
discrepancy between Q and Qpure.

We can interpret these results in the context of
device-independent tests of information. If the in-
formation content of the quantum communication is
not known, then we may use the upper bound on
the quantum correlations (blue curve) to determine
a bound on the minimal amount of information re-
quired to explain the observed correlations in a quan-
tum model. For example, Ref. [37] experimentally
implemented this communication experiment using
both qubit and qutrit ensembles and reported a wit-
ness value of Aqubit

322 = 3.7815 ± 0.0782 and Aqutrit
322 =

4.9303 ± 0.1032 respectively. In order to determine
the information content of these ensembles (without
assuming their respective dimensions), we use our up-
per bounds on the quantum correlations. Specifically,
when the experimental errors are taken into consid-
eration, we certify a quantum information content of
at least I(X|B) = 0.98 ± 0.02 bits for the first en-
semble and I(X|B) = 1.54± 0.05 bits for the second
ensemble. Both these results nearly saturate the max-
imal possible information content of qubit and qutrit
ensembles, namely 1 bit and log2 3 bits respectively.
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4.4 Resource inequalities for one bit of infor-
mation
Consider the information restriction I(X|B) ≤ α
with α = log2 d for some integer d ≥ 2. This is a par-
ticularly interesting case since it enables a meaningful
comparison of classical and quantum correlations to
those that can be obtained from d-dimensional clas-
sical and quantum communication. Here, we focus
on the simplest case of d = 2 (IX ≤ 1 bit) and
consider the comparative relation between classical
and quantum correlations respectively when obtained
from i) communication of two-level systems, ii) one
bit of communication in pure-state models and iii)
one bit of communication in general models. Let us
denote the set of classical and quantum correlations
achievable with two-dimensional communication by
Cdim and Qdim. It is clear that the following two
chains of inclusions must be true:

Cdim ⊆ Cdet ⊆ C and Qdim ⊆ Qpure ⊆ Q. (82)

The first inclusion in each case follows from the fact
that every ensemble of classical or quantum two-level
systems can be simulated by classical or quantum en-
sembles of pure two-level systems under shared ran-
domness8. The second inclusion on each line follows
trivially from the fact that general classical and quan-
tum models admit deterministic and pure-state mod-
els respectively as special cases.

It is interesting to determine which of the inclu-
sions (82) are strict, i.e., which classical and quan-
tum resources are fundamentally different. We first
focus on the quantum case and prove that all three
resources are inequivalent. Notably, Ref. [21] proved
that Qdim ⊂ Q using a construction that involved 16
states. The proofs presented here are simpler, as they
only require three states, but inherently different as
they are based on biasing the prior probabilities.

Consider again the input/output scenario
(nX , nY , nB) = (3, 2, 2) and once again the wit-
ness A322. In the previous section, we saw that
for IX ≤ 1 bit (Pg ≥ 2

3 ), there was no discrepancy
between the general quantum model and the pure-
state quantum model. In addition, if we restrict to
qubits, the witness A322 reduces to that introduced in
Ref. [5], whose maximum is known again to give the
same result. However, consider now that we change
the prior distribution of Alice’s inputs: instead of
being uniform, let us choose it as q1 = q2 = 2

5 and
q3 = 1

5 . Since Hmin(X) = log2(5) − 1, the guessing
probability corresponding to one bit of information is
Pg = 4

5 . What now are the largest possible values of
A322 under qubits, pure-state models with Pg ≤ 4

5 ,
and general models with Pg ≤ 4

5?

8Recall that since every ensemble of two-level systems car-
ries no more than one bit of information, then also their mixture
under shared randomness does not lead to more than one bit
of information.

Since biasing the prior affects the information con-
straint but not the dimension of the physical system,
it follows that the largest value of A322 remains unaf-
fected when evaluated over qubits. We have

A322
Qdim
≤ 1 + 2

√
2 ≈ 3.8284, (83)

which is a tight bound. However, in the case of pure-
state models and general quantum models, biasing the
prior means that Bob already has some knowledge of
Alice’s input. Thus, we would intuitively expect that
the correlations improve as compared to the unbiased
case. This intuition can be proven using the tools
from the previous sections. Evaluating the respective
semidefinite relaxations of the set of quantum corre-
lations, we find that

A322
Qpure

≤ 4.3184, A322
Q
≤ 4.4641. (84)

We use alternating convex search to place a lower
bound on the witness in the stochastic case: for
qubits we achieve A322 = 3.8284 (saturating (83)),
for qutrits we achieve A322 = 4.2641 and for ququarts
we achieve A322 = 4.4142. The ququart strategy uses
one pure state and two mixed states each with spec-
tra (1/2, 1/2, 0, 0). The lower bound obtained with
ququarts is sufficient to outperform pure-state quan-
tum models and conclude that Qpure ⊂ Q. Moreover,
in order to also show that Qdim ⊂ Qpure, it is suf-
ficient to note that the following strategy based on
pure-state quantum communication outperforms the
qubit bound. Let Alice prepare the qutrit states

|ψ1〉 = 1
2

√3
1
0

 , |ψ2〉 = 1
2

 1√
3

0

 , |ψ3〉 =

0
0
1

 . (85)

It is easily checked (e.g. via an SDP) that the guessing
probability is Pg = 4/5. Then, let Bob perform com-
patible measurements {|3〉, |1 + 2〉} and {|2〉, |1 + 3〉}.
Then, one finds A322 = 4 which exceeds the qubit
bound.

Let us now consider the same problem with classical
resources. Using the tools from Section 3, we can
straightforwardly show the tight inequalities

A
Cdim
≤ 3, A

Cdet
≤ 4, A

C
≤ 4, (86)

which immediately assert that informationally re-
stricted classical correlations are more powerful than
dimensionally restricted classical correlations; specifi-
cally Cdim ⊂ Cdet. However, it still does not determine
whether Cdet is a strict subset of C for one bit of in-
formation. This is left as an open problem.

5 Semi-device-independent random
number generation
In the previous section, we have seen how quantum
correlations can be bounded in communication exper-
iments in which the only assumption is a bound on
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the amount of information that the communication
carries. Here, we leverage these methods towards ap-
plication in semi-device-independent RNG. In a first
example, we focus on the facet-defining witness A322
and compute the certified randomness as a function of
the information. This allows us to obtain a nearly op-
timal RNG rate. In a second example, we consider the
case of one bit of information and consider the amount
of randomness that can be robustly certified under a
conventional qubit assumption as compared to that
certified under an information assumption. We show
that the correlations used in a standard qubit exper-
iment can be recycled to certify the same amount of
randomness when the assumption is relaxed to the
strictly weaker information assumption.

5.1 Randomness versus information

Let us again consider the witness A322 in (a gen-
eral) quantum model. In Section 4.3 we obtained
the maximal quantum witness value for any infor-
mation between zero and one bit, corresponding to
a guessing probability Pg ∈ [ 1

3 ,
2
3 ]. Here, we evalu-

ate the extractable randomness in the output of Bob
associated to such maximal quantum witness values.
Specifically, we consider that Alice and Bob decide
to extract randomness from the event correspond-
ing to Alice’s third input (x = 3) and Bob’s first
input (y = 1). Then, the certified randomness is
given by the min-entropy Hmin = − log2 p∗, where
p∗ = max{p(1|3, 1), p(2|3, 1)}, compatible with the
observed maximal value of A322

9. Using the intro-
duced semidefinite relaxations, we can place an up-
per bound on p∗ which translates into a lower bound
on the certified randomness. The results are illus-
trated in Fig. 4. These results can also be accurately
matched with upper bounds on the randomness ob-
tained via the alternating convex search method (see
Section 4.1). Hence, the bound on the certified ran-
domness is tight (up to solver precision). In Fig. 4, we
see that by suitably tuning the information in Alice’s
communication, one can obtain nearly one bit of ran-
domness (which is algebraically maximal for binary-
outcome measurements). Specifically, at Pg ≈ 0.522
we certify approximately 0.995 bits of randomness.
Hence, we conclude that nearly optimal randomness
can be certified under the information assumption.
Notably, for Pg ≈ 2

3 , the randomness vanishes. This is
due to our choice of setting (x = 3, y = 1). A substan-
tial amount of randomness can be certified for Pg ≈ 2

3
by instead considering the event (x, y) = (1, 1). How-
ever, the rate is significantly lower than that obtained
at the optimal choice of information for (x, y) = (3, 1).

9To enhance numerical feasibility, we only impose the opti-
mal value of A322 up to four decimals.
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Figure 4: Randomness versus the information (quantified via
the guessing probability) of Alice’s communication. The re-
sults are obtained for the maximal quantum value of the
witness A322 in general quantum communication models.

5.2 Qubits versus one bit of information
We investigate the comparison between certified ran-
domness under the conventional assumption of qubits
and our assumption of informational restriction. This
comparison is only meaningful for one bit of infor-
mation; to which we therefore restrict ourselves. To
this end, we focus on a witness that has previously
been employed for RNG in dimension bounded sys-
tems [38, 39], namely a quantum random access code.

In a quantum random access code, Alice receives
one of four possible inputs labelled by two bits x =
x1x2 ∈ {1, 2}×2 while Bob has two possible inputs
y ∈ {1, 2} and two possible outputs b ∈ {1, 2}. The
correlation witness is defined as

ARAC = 1
8
∑
x,y

(−1)xyExy. (87)

We analyse this witness in two scenarios, i) Alice sends
qubits to Bob (dimension assumption) and ii) Alice
sends at most one bit of information to Bob (infor-
mation assumption). Naturally, since all qubit ensem-
bles carry at most one bit of information, while many
higher dimensional ensembles also carry no more than
one bit of information, the information assumption
is less restrictive than the dimension assumption. It
is well known that the optimal value of ARAC using
qubits is 1√

2 [16]. Using the tools from Section 4, we
find that ARAC = 1√

2 also is the largest possible value
under one bit of information.

Due to the symmetries of the witness ARAC, the
choice of event from which randomness is extracted
does not influence the amount of randomness certi-
fied. We therefore choose the event (x, y) = (1, 1)
and employ semidefinite relaxations for information-
ally restricted quantum correlations to place a lower
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Figure 5: The randomness certified in a quantum random
access code. Up to numerical precision, the amount of ran-
domness certified under the qubit assumption and one bit of
information assumption is identical.

bound on the randomness as a function of the wit-
ness. The results are illustrated in Fig. 5. A nearly
optimal value of the witness certifies over 0.2 bits of
randomness while also significantly sub-optimal wit-
ness values permit a non-zero amount of certified ran-
domness. Then, we consider the same problem under
the assumption of qubit communication. To this end,
we have used the symmetrised semidefinite relaxation
hierarchy of Refs. [8, 40]. Up to solver precision, we
certify the same amount of randomness as is obtained
under the information assumption, i.e. the curve is
identical to that displayed in Fig. 5. Moreover, the
obtained lower bounds on the randomness are opti-
mal since we can saturate them with an explicit family
of quantum models based on qubits. Hence, we con-
clude that the quantum random access code allows us
to certify the same amount of randomness under the
strictly weaker assumption of informational restric-
tion as compared to the dimension bounded scenario,
while only requiring the experimental realisation of
standard qubit strategies.

6 Conclusion
In this article, we have investigated classical and
quantum correlations limited only by the information
content of the corresponding classical and quantum
communication. This constitutes a departure from
conventional dimension bounded communication in
favour of an analysis based on entropic quantities. We
have presented a complete characterisation of infor-
mationally restricted classical correlations in terms of
linear programming, thereby generalising the results
of [21] based on deterministic communication mod-
els. For the set of informationally restricted quantum
correlations, we have both developed efficient interior-

point search methods and hierarchies of semidefinite
relaxations for placing upper bounds on the set. We
have applied these tools to device-independently wit-
ness the amount of information carried by a clas-
sical and quantum ensemble as well as to establish
strict resource inequalities for different information
resources. Furthermore, we have outlined a new av-
enue for semi-device-independent quantum informa-
tion processing based on the information assumption.
This was exemplified through the investigation of
semi-device-independent random number generation
for which we both reported nearly optimal rates and
advantages over dimension bounded systems. The re-
sults presented in this work provide important tools
for analysing informationally restricted classical and
quantum correlations.

Our work leaves a number of open problems, some
of which we list here. 1) How tight are the bounds
obtained through our semidefinite hierarchy for in-
formationally restricted quantum correlations? Can
one introduce a semidefinite hierarchy that provably
converges to the quantum set? 2) Is there a strict
resource inequality for informationally restricted clas-
sical correlations for the deterministic versus general
communication models? 3) It would be interesting
to consider the experimental implementation of semi-
device-independent random number generation based
on the information assumption. 4) Are there other
semi-device-independent protocols that are practical
to base on the information assumption? Two obvious
candidates to consider for this purpose are quantum
key distribution and self-testing.

Finally, we note that the information-restricted ap-
proach also can be used as a relaxation method to
bound correlations in prepare-and-measure experi-
ments subject to other assumptions, for which meth-
ods to bound the set of quantum correlations are not
known.
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A Derivation of vertex probabilities
Here we derive the vertex probabilities (22)–(25) in
Section 2.1 using the Fourier-Motzkin algorithm. For
convenience, we undertake the derivation for joint
probabilities

pbx = qxp(b|x), x = 1, 2, (88)

in which we absorb the prior probabilities qx with
which the inputs x = 1 and x = 2 are chosen. We
also drop Bob’s input y, since the constraints on these
probabilities are just the same repeated for each y.
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These probabilities are characterised by∑
b

pbx = qx, (89)

pbx ≥ 0, (90)∑
b

max(pb1, pb2) ≤ G. (91)

Setting pb1 = (vb+δb)/2 and pb2 = (vb−δb)/2 we can
reexpress the same problem as

1−
∑
b

vb = 0, (92)

δ −
∑
b

δb = 0, (93)

vb + δb ≥ 0, (94)
vb − δb ≥ 0, (95)

∆−
∑
b

|δb| ≥ 0, (96)

with ∆ = 2G − 1 and δ = q1 − q2. The last inequal-
ity should be read as 2nB different linear inequali-
ties, corresponding to the 2nB different combinations
of substitutions |δb| = ±δb.

The most general valid inequality can be obtained
by taking linear combinations of the above constraints
with nonnegative coefficients for the inequalities and
arbitrary coefficients for the equalities, i.e.,

λ
(

1−
∑
b

vb

)
+ µ

(
δ −

∑
b

δb

)
+
∑
x

νb1(vb + δb) +
∑
x

νb2(vb − δb)

+
∑

s∈{±}×nB

ξs

(
∆−

∑
b

sbδb

)
≥ 0 (97)

subject to the conditions

νbx ≥ 0, (98)
ξs ≥ 0, (99)

where in the last term the summation index s =
(s1, . . . , snB ) is a vector of signs to use in front of
the δbs. By grouping the constant terms and terms
in vb and δb together we can write the most general
possible constraint as

γ +
∑
b

αbvb +
∑
b

βbδb ≥ 0 (100)

with

γ = λ+ δµ+ ∆ξ, (101)
αb = −λ+ σb, (102)
βb = −µ+ εb − ξb, (103)

and

σx = νb1 + νb2, (104)
εx = νb1 − νb2, (105)

ξ =
∑

s

ξs, (106)

ξb =
∑

s

ξssb, (107)

νbx ≥ 0, (108)
ξs ≥ 0. (109)

From here, our goal is to eliminate variables until we
are left with linear constraints involving only γ and
the αbs and βbs. According to (100), we can interpret
these as a sufficient set of points (vb, δb) to test to
determine if (100) is a valid inequality for given values
of γ, αb, and βb.

We first eliminate the νbxs. We take the sum and
difference of (104) and (105) to get σb+εb = 2νb1 and
σb − εb = 2νb2; combined with νbx ≥ 0 this gives the
constraints

− εb ≤ σb ≤ εb (110)
directly on σb and εb and we can from this point for-
get about the νbxs. Similarly, (107) is just express-
ing that ξb are the coordinates of a point that is a
‘convex combination of the corners {±1}×nB of the
nB-dimensional cube, except that the coefficients are
normalised to a number

∑
s ξs = ξ instead of one.

Thus (106) and (107) are equivalent to

− ξ ≤ ξb ≤ ξ. (111)

Our set of inequalities thus simplifies to

γ = λ+ δµ+ ∆ξ, (112)
αb = −λ+ σb, (113)
βb = −µ+ εb − ξb, (114)

subject to

σb − εb ≥ 0, (115)
σb + εb ≥ 0, (116)
ξ − ξb ≥ 0, (117)
ξ + ξb ≥ 0. (118)

Let us next eliminate σb and ξ. We get

c− λ− δµ ≥ ∆ξb, (119)
c− λ− δµ ≥ −∆ξb, (120)

αb + λ ≥ εb, (121)
αb + λ ≥ −εb, (122)
βb + µ = εb − ξb. (123)

Eliminating εb then gives

γ − λ− δµ−∆ξb ≥ 0, (124)
γ − λ− δµ+ ∆ξb ≥ 0, (125)

αb + λ ≥ 0 , (126)
αb − βb + λ− µ− ξb ≥ 0, (127)
αb + βb + λ+ µ+ ξb ≥ 0, (128)
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and eliminating ξb gives

γ − λ− δµ ≥ 0, (129)
αb + λ ≥ 0, (130)

γ + ∆αb + ∆βb − (1−∆)λ+ (∆− δ)µ ≥ 0, (131)
γ + ∆αb −∆βb − (1−∆)λ− (∆ + δ)µ ≥ 0. (132)

There are at this point only two unwanted variables
left, λ and µ. Eliminating λ first gives

γ + αb − δµ ≥ 0, (133)
γ + (1−∆)αb + ∆αb′ + ∆βb′ + (∆− δ)µ ≥ 0, (134)
γ + (1−∆)αb + ∆αb′ −∆βb′ − (∆ + δ)µ ≥ 0. (135)

Note that, here, there can be two different values of
the output, b and b′, since when we combine (130)
with (131) and (132) we have to do it for all possible
values of b in both inequalities. Additionally, the first
of the inequalities we are left with above is redundant
since it can be derived by summing the second and
third constraints with b′ = b and then dividing by two.
Combining the two remaining inequalities to eliminate
the last variable µ gives the family of inequalities

γ +
(

1 + δ

∆

)1−∆
2 αb +

(
1− δ

∆

)1−∆
2 αb′

+
(

1 + δ

∆

)∆
2 αb

′′ +
(

1− δ

∆

)∆
2 αb

′′′

+
(

1 + δ

∆

)∆
2 βb

′′ −
(

1− δ

∆

)∆
2 βb

′′′ ≥ 0(136)

with up to four different indices, b, b′, b′′, and b′′′,
but many of these are redundant. To begin with, we
don’t need the inequalities with b 6= b′, so the system
reduces to

γ + (1−∆)αb + ∆ + δ

2 αb′ + ∆− δ
2 αb′′

+ ∆ + δ

2 βb′ −
∆− δ

2 βb′′ ≥ 0 (137)

since all of the inequalities in (136) can be recovered
by summing two instances of (137) with different val-
ues of b with weights (1 + δ/∆)/2 and (1− δ/∆)/2.

Having now eliminated all the unwanted variables
we express (137) as

γ +α · v + β · δ ≥ 0 (138)

with

vb = 1−∆ , vb′ = ∆ + δ

2 , vb′′ = ∆− δ
2 , (139)

δb = 0, δb′ = ∆ + δ

2 , δb′′ = −∆− δ
2 (140)

and all other vs and δs equal to zero. These terms are
additive and combine if some of the indices coincide;
for example, if b = b′ 6= b′′ then we use vb = 1 −
∆/2 + δ/2 and δb = ∆/2 + δ/2. Eqs. (139) and (140)
identify give a set of points (v, δ) that it is sufficient
to test to find if (138), for some given coefficients γ,

α, and β, is a valid inequality for all points satisfying
the system (92)–(96) of constraints for v and δ above.
In terms of pbx = (vb + δb)/2 and pb2 = (vb − δb)/2
and reintroducing G and q1 and q2 via ∆ = 2G − 1,
δ = q1 − q2, and 1 = q1 + q2, these correspond to

pb1 = 1−G, pb′1 = q1 +G− 1, pb′′1 = 0 (141)

and

pb2 = 1−G, pb′2 = 0, pb′′2 = q2 +G− 1. (142)

Considering different ways of taking the outputs b,
b′, and b′′ the same as or different from each other
gives five different kinds of probability distributions,
up to relabelling the output. In matrix notation like
we used in Section 2.1 they are(

q1 0 0
q2 0 0

)
, (143)(

q1 0 0
1−G q2 +G− 1 0

)
, (144)(

1−G q1 +G− 1 0
q2 0 0

)
, (145)(

1−G q1 +G− 1 0
1−G q2 +G− 1 0

)
, (146)(

1−G q1 +G− 1 0
1−G 0 q2 +G− 1

)
. (147)

With the exception of (146), which is not a vertex, di-
viding the first and second rows by the prior probabili-
ties q1 and q2 gives the vertices asserted in Section 2.1.
We can see that (146) is not a vertex by noticing that
it can be obtained from some of the other matrices
above. Specifically,(

1−G G− q1
1−G G− q2

)
= θ1

(
0 q1
0 q2

)
+ θ2

(
q1 0

1−G G− q2

)
+ θ3

(
1−G G− q1
q2 0

)
(148)

for the convex coefficients

θ1 = (G− q1)(G− q2)
q1q2 − (1−G)2 , (149)

θ2 = (1−G)(G− q1)
q1q2 − (1−G)2 , (150)

θ3 = (1−G)(G− q2)
q1q2 − (1−G)2 . (151)

B Characterisation of the (2, 1, 2) sce-
nario
B.1 Characterisation of Cdet
Let us begin by considering this scenario when there
is no shared randomness. In that case, the problem
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is trivial, Alice’s messages depend only on x, and if
the guessing probability bound G is anything strictly
less than one then the only possibility is that Alice
sends the same message in both cases, in which case
the resulting probabilities must be the same. There-
fore without shared randomness, the correlations set
collapses to a line E1 = E2.

In the following we suppose that q1 > q2 with-
out loss of generality. If shared randomness is avail-
able, then Alice can sometimes send the same message
(with associated guessing probability q1) and some-
times send different messages (with guessing proba-
bility one) as long as the average guessing probability
remains smaller than G.

If Alice sends the same message, Bob can generate
the following extremal probabilities

(E1, E2) = (+1,+1) or (−1,−1), (152)

while if Alice sends different messages Bob can gener-
ate the extremal probabilities

(E1, E2) = (+1,+1), (+1,−1), (−1,+1), or (−1,−1).
(153)

The extremal probabilities that Bob can generate
overall are combinations of (152) with some proba-
bility θ and (153) with some probability 1 − θ. We
should use

θ = 1−G
q2

and 1− θ = G− q1

q2
(154)

which are chosen such that

θ · q1 + (1− θ) · 1 = G, (155)

in order to respect the guessing probability bound
of G on average. (We could make these inequali-
ties rather than equalities, but this is unnecessary
since (153) includes the two extremal points in (152)
and any excess in the value of θ could be absorbed
into that.) After eliminating two redundant ones this
yields six vertices,

(E1, E2) = (+µ,+1), (+1,+1), (+1,+µ), (−µ,−1),
(−1,−1), (−1,−µ) (156)

with
µ = 1 + q1 − 2G

q2
. (157)

All probabilities represented by values (E1, E2) in this
scenario must be convex combinations of these six ver-
tices. In addition to the trivial conditions |Ex| ≤ 1,
this implies two facet inequalities,

|E1 − E2| ≤ 2G− q1

q2
. (158)

B.2 Characterisation of Qdet

The problem is very similar to a quantum set stud-
ied in Section 3.1 in [17]. For pure states, the

guessing probability associated to the ensemble E =
{q1, ψ1; q2, ψ2} is

Pg(X|E) = 1
2 + 1

2

√
1− 4q1q2

∣∣〈ψ1|ψ2〉
∣∣2. (159)

Assuming the guessing probability satisfies
Pg(X|E) ≤ G for some bound G and rearrang-
ing for the inner product gives

∣∣〈ψ1|ψ2〉
∣∣2 ≥ G(1−G)

q1q2
. (160)

In the following we derive what this implies for a linear
combination

W = c1E1 − c2E2 (161)

of correlation terms Ex = Tr[Eψx] with −1 ≤ E ≤ 1.
We remark first that the witness W is trivial if the
coefficients c1 and c2 are not of the same sign because
the positivity constraints Ex ≤ 1 alone imply

c1E1 − c2E2 ≤ |c1|+ |c2|, (162)

which is trivially attained with E1 = E2 = ±1 when
the coefficients are of opposite signs. We thus concen-
trate on the case that c1 and c2 are both of the same
sign. In the rest of this section we suppose without
loss of generality that c1 and c2 are nonnegative and
that c1 + c2 = 1. We also suppose for simplicity that
q1 ≥ q2.

BoundingW with c1 and c2 taken to have the same
sign gives

c1E1 − c2E2 = Tr
[
E(c1ψ1 − c2ψ2)

]
≤
∥∥c1ψ1 − c2ψ2

∥∥
1

=
√

(c1 + c2)2 − 4c1c2
∣∣〈ψ1|ψ2〉

∣∣2
=
√

1− 4c1c2
∣∣〈ψ1|ψ2〉

∣∣2, (163)

where we substituted c1 + c2 = 1 in the last line.
Combining this with the bound (160) on |〈ψ1|ψ2〉| in
terms of G gives

c1E1 − c2E2 ≤
√

1− 4c1c2
q1q2

G(1−G). (164)

The inequality (164) gives a tight upper bound on the
witness to the left in terms of the guessing probability
assuming Alice sends one of two pure states |ψx〉 with
probabilities qx. To generalise to allow shared ran-
domness we need to take the convex hull of the right
side of (164). Fortunately this is straightforward. The
right side of (164) is convex if

c1c2
q1q2

≥ 1 (165)

and concave otherwise; this can be determined by
computing the second derivative of the family of func-
tions fQ(x) =

√
1− 4Qx(1− x).
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The condition identifying convexity is satisfied un-
der two conditions: if c1 ≥ q1 or if c1 ≤ q2 (remember
we are supposing q1 ≥ 1/2 ≥ q2). In this case we
need to interpolate (164) between the extreme values
G = q1 and G = 1. This gives

c1E1 − c2E2 ≤
1−G
q2
|c1 − c2|+

G− p1

q2
. (166)

Supposing c1 ≥ q1 ≥ q2 ≥ c2 gives

c1E1− c2E2 ≤
1
q2

(
(1−G)(c1− c2) +G− q1

)
, (167)

which simplifies to

c1E1 − c2E2 ≤
1
q2

(
c1 − q1 + (2G− 1)c2

)
. (168)

Most of this family of inequalities is redundant, since
it is implied by the special case with cx = qx,

q1E1 − q2E2 ≤ 2G− 1, (169)

and the trivial inequality E1 ≤ 1. This can be seen
by rewriting (168) as
c1 − q1

q2
E1 + c2

q2

(
q1E1−q2E2

)
≤ c1 − q1

q2
+ c2
q2

(
2G−1

)
.

(170)
Similarly, if c2 ≥ q1 ≥ q2 ≥ c1, we get a family of
inequalities that is the same as (168) except with c1
and c2 interchanged on the right side,

c1E1 − c2E2 ≤
1
q2

(
c2 − q1 + (2G− 1)c1

)
, (171)

but only the special case with c1 = q2 and c2 = q1,
i.e.,

q2E1 − q1E2 ≤ 2G− 1, (172)
is not implied by other inequalities. This confirms
that the only nontrivial linear inequalities satisfied
by correlations in the quantum deterministic set are
precisely (164) for q2 ≤ c1, c2 ≤ q1.

Note that part of the boundary of the quantum set
coincides with an ellipse, characterised by

(1− γ)(E1 +E2)2 + γ(E1 −E2)2 = 4γ(1− γ), (173)

for γ = G(1−G)/(q1q2).

C Finite message dimension in classi-
cal scenarios
Similarly to appendix A, we work with joint proba-
bilities

pmx = qxp(m|x) (174)
with the priors qx absorbed. These as well as allowed
values of the upper bound G on the guessing proba-
bility are characterised by

qx −
∑
m

pmx = 0, ∀m, (175)

pmx ≥ 0, ∀m,x, (176)

G−
∑
m

pmxm ≥ 0, ∀x = (xm). (177)

The most general family of inequalities implied by this
is ∑

x

ξx

(
qx −

∑
m

pmx

)
+ µmx pmx

+
∑

x

λx

(
G−

∑
m

pmxm

)
≥ 0, (178)

for any ξx and any nonnegative µmx and λx. We can
express this as

γ +
∑
mx

αmxpmx + βG ≥ 0. (179)

where

γ =
∑
x

ξxqx, (180)

αmx = −ξx + µmx − λmx, (181)
β = λ, (182)

λ =
∑

x

λx, (183)

λmx =
∑

x

λxδxxm , (184)

λx ≥ 0, (185)
µmx ≥ 0, (186)

where δxx′ is the Kronecker delta.
We aim to simplify this system to obtain the most

straightforward possible constraints for γ, αmx, and
β. First, to eliminate the λxs, note that (183), (184),
and (185) imply

λmx ≥ 0 and
∑
x

λmx = λ. (187)

Conversely, any variables λmx that satisfy these con-
ditions can be written in the form (184) with nonneg-
ative λxs, for example with

λx = λ−(nM−1)
∏
m

λmxm , (188)

where nM is the number of different values of the vari-
able m. Substituting also λ = β simplifies the system
to

γ =
∑
x

ξxqx, (189)

αmx = −ξx + µmx − λmx, (190)

β =
∑
x

λmx, (191)

λmx ≥ 0, (192)
µmx ≥ 0. (193)

Eliminating the λmxs gives

γ =
∑
x

ξxqx, (194)

β =
∑
x

(
−αmx − ξx + µmx

)
, (195)

µmx ≥ αmx + ξx, (196)
µmx ≥ 0, (197)
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and eliminating the µmxs gives

γ −
∑
x

qxξx = 0, (198)

β +
∑
x

ux
(
αmx + ξx

)
≥ 0, ∀m,ux ∈ {0, 1}. (199)

The last step would consist of eliminating the ξxs.
Note first that the instance ux = 0 for all x of (199)
gives an inequality

β ≥ 0 (200)
which does not involve any of the variables ξx. This
corresponds to the (unique) conic generator(

p(m|x), G
)

= (0, 1) (201)

of the polyhedronM+ which, in turn, just expresses
a property of M+ that was already evident from its
definition: we can increase the guessing probability
bound component G of any point

(
p(m|x), G

)
inM+,

by adding any nonnegative multiple of (201) to it, and
the resulting point will still be inM+.

For the remaining instances of (199), we seek to
bound the maximum number of different values of the
message index m that can appear in any inequality in
the process of eliminating the nX variables ξx. We
rewrite the problem as

γ =
∑
x

qxξx, (202)∑
x

uxξx ≥ −β −
∑
x

uxαmx, (203)

to make it clear that the initial inequalities (203) all
give lower bounds on the ξxs and the problem can
be seen as combining (202) with sums of instances of
(203) such that the left side equals

∑
x qxξx. Elimi-

nating first one of the ξxs, which consists of combining
(202) with all the instances of (203) in which the cho-
sen variable ξx appears with a nonzero coefficient ux,
yields a system of inequalities that each involve only
one value of m. The process of eliminating the re-
maining nX − 1 variables ξx can then at worst double
the number of different values of m appearing in the
inequalities at each step. The inequalities we obtain
for γ, αmx, and β at the end of this process can thus
not involve more than 2nX−1 different values of the in-
dex m. With the the exception of (200) we can write
all of them in the form

γ +
∑
mx

αmxpmx + βG, (204)

from which we infer that the vertices of M+ are
strategies

(
p(m|x), G

)
in which no more than 2nX−1

different messages m are used in each strategy, i.e., in
a matrix notation

(
p(m|x)

)
=

p(1|1) p(2|1) · · ·
p(1|2) p(2|2) · · ·

...
...

. . .

 (205)

the components p(m|x) of the vertices ofM+ all have
at most 2nX−1 columns containing nonzero entries.

At this point we remark that we have not restricted
the number of messages m used overall, which is sim-
ply whatever number nM of different values of m we
allow to appear in the problem from the beginning,
since the 2nX−1 messages used in each vertex will gen-
erally be different for each vertex. Remember, how-
ever, that we are not interested in the communication
strategies represented byM+ themselves but the ex-
tremal correlations

p(b|x, y) =
∑
m

p(m|x)p(b|y,m) (206)

that can ultimately be generated with them, which
also depend on Bob’s extremal responses p(b|y,m),
and we can use a symmetry of the setting to reduce
the communication strategies we need to consider. In
particular, both the sets of extremal communication
strategies

{(
p(m|x), G

)}
and of Bob’s extremal re-

sponses {p(b|y,m)} are symmetric with respect to re-
labellings of the messages, under which (206) is also
invariant. We can hence limit the number of messages
nM we need to consider to 2nX−1 for the purpose of
generating the extremal points

(
p(b|x, y), G

)
of C+, as

allowing more messages will only result in more ways
of generating the same correlations p(b|x, y) through
(206).
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