Opinion: Democratizing Spin Qubits

Charles Tahan

Laboratory for Physical Sciences, 8050 Greenmead Rd, College Park, MD 20740

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


I've been building Powerpoint-based quantum computers with electron spins in silicon for 20 years. Unfortunately, real-life-based quantum dot quantum computers are harder to implement. Materials, fabrication, and control challenges still impede progress. The way to accelerate discovery is to make and measure more qubits. Here I discuss separating the qubit realization and testing circuitry from the materials science and on-chip fabrication that will ultimately be necessary. This approach should allow us, in the shorter term, to characterize wafers non-invasively for their qubit-relevant properties, to make small qubit systems on various different materials with little extra cost, and even to test spin-qubit to superconducting cavity entanglement protocols where the best possible cavity quality is preserved. Such a testbed can advance the materials science of semiconductor quantum information devices and enable small quantum computers. This article may also be useful as a light and light-hearted introduction to quantum dot spin qubits.

I've been building Powerpoint-based quantum computers with electron spins in silicon for 20 years. Unfortunately, real-life-based quantum dot quantum computers are harder to implement. The way to accelerate discovery is to make and measure more qubits. Here I discuss separating the qubit realization and testing circuitry from the materials science and on-chip fabrication that will ultimately be necessary. Such a testbed can advance the materials science of semiconductor quantum information devices and enable small quantum computers.

► BibTeX data

► References

[1] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen. Spins in few-electron quantum dots. Reviews of Modern Physics, 79 (4): 1217–1265, October 2007. 10.1103/​RevModPhys.79.1217.

[2] Matthew G. Borselli, Kevin Eng, Richard S. Ross, Thomas M. Hazard, Kevin S. Holabird, Biqin Huang, Andrey A. Kiselev, Peter W. Deelman, Leslie D. Warren, Ivan Milosavljevic, Adele E. Schmitz, Marko Sokolich, Mark F. Gyure, and Andrew T. Hunter. Undoped accumulation-mode Si/​SiGe quantum dots. Nanotechnology, 26 (375202), August 2015. https:/​/​doi.org/​10.1088/​0957-4484/​26/​37/​375202.

[3] D. M. Zajac, T. M. Hazard, X. Mi, K. Wang, and J. R. Petta. A reconfigurable gate architecture for Si/​SiGe quantum dots. Applied Physics Letters, 106 (22): 223507, June 2015. ISSN 0003-6951, 1077-3118. 10.1063/​1.4922249.

[4] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak. A Two Qubit Logic Gate in Silicon. Nature, 526 (7573): 410–414, October 2015. ISSN 0028-0836, 1476-4687. 10.1038/​nature15263.

[5] M. D. Reed, B. M. Maune, R. W. Andrews, M. G. Borselli, K. Eng, M. P. Jura, A. A. Kiselev, T. D. Ladd, S. T. Merkel, I. Milosavljevic, E. J. Pritchett, M. T. Rakher, R. S. Ross, A. E. Schmitz, A. Smith, J. A. Wright, M. F. Gyure, and A. T. Hunter. Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation. Phys. Rev. Lett., 116 (11): 110402, March 2016. 10.1103/​PhysRevLett.116.110402.

[6] Frederico Martins, Filip K. Malinowski, Peter D. Nissen, Edwin Barnes, Saeed Fallahi, Geoffrey C. Gardner, Michael J. Manfra, Charles M. Marcus, and Ferdinand Kuemmeth. Noise suppression using symmetric exchange gates in spin qubits. Phys. Rev. Lett., 116: 116801, Mar 2016. 10.1103/​PhysRevLett.116.116801.

[7] M. Rudolph, P. Harvey-Collard, R. Jock, N. T. Jacobson, J. Wendt, T. Pluym, J. Dominguez, G. Ten-Eyck, R. Manginell, M. P. Lilly, and M. S. Carroll. Coupling MOS Quantum Dot and Phosphorus Donor Qubit Systems. IEEE International Electron Devices Meeting (IEDM), pages 34.1.1–34.1.4, December 2016. 10.1109/​IEDM.2016.7838537.

[8] D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor, G. Burkard, and J. R. Petta. Resonantly driven cnot gate for electron spins. Science, 359 (6374): 439–442, August 2018. https:/​/​doi.org/​10.1126/​science.aao5965.

[9] T. F. Watson, S. G. J. Philips, E. Kawakami, D. R. Ward, P. Scarlino, M. Veldhorst, D. E. Savage, M. G. Lagally, Mark Friesen, S. N. Coppersmith, M. A. Eriksson, and L. M. K. Vandersypen. A programmable two-qubit quantum processor in silicon. Nature, 555: 633–637, August 2018. https:/​/​doi.org/​10.1038/​nature25766.

[10] Floris A. Zwanenburg, Andrew S. Dzurak, Andrea Morello, Michelle Y. Simmons, Lloyd C. L. Hollenberg, Gerhard Klimeck, Sven Rogge, Susan N. Coppersmith, and Mark A. Eriksson. Silicon quantum electronics. Rev. Mod. Phys., 85 (961), 2013. https:/​/​doi.org/​10.1103/​RevModPhys.85.961.

[11] C. Kloeffel and D. Loss. Prospects for spin-based quantum computing. Annu. Rev. Condens. Matter Phys., 4: 51–81, April 2013. https:/​/​doi.org/​10.1146/​annurev-conmatphys-030212-184248.

[12] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi, N. Usami, K. M. Itoh, and S. Tarucha. A >99.9 charge noise. Nature Nanotechnology, 13: 102–106, 2018. https:/​/​doi.org/​10.1038/​s41565-017-0014-x.

[13] Peter. Y. Yu and Manuel Cardona. Fundamentals of Semiconductors: Physics and Materials Properties. Springer, 2001.

[14] W. Kohn and J. M. Luttinger. Theory of donor states in silicon. Phys. Rev., 98: 915–922, May 1955. 10.1103/​PhysRev.98.915.

[15] Charles Tahan and Robert Joynt. Relaxation of excited spin, orbital, and valley qubit states in ideal silicon quantum dots. Phys. Rev. B, 89: 075302, Feb 2014. 10.1103/​PhysRevB.89.075302.

[16] Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Charge insensitive qubit design derived from the cooper pair box. Phys. Rev. A, 76 (4): 042319, October 2007. ISSN 1050-2947, 1094-1622. https:/​/​doi.org/​10.1103/​PhysRevA.76.042319.

[17] J. A. Schreier, A. A. Houck, Jens Koch, D. I. Schuster, B. R. Johnson, J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Suppressing charge noise decoherence in superconducting charge qubits. Phys. Rev. B, 77 (18): 180502(R), May 2008. ISSN 1098-0121, 1550-235X. https:/​/​doi.org/​10.1103/​PhysRevB.77.180502.

[18] A. A. Houck, Jens Koch, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Life after charge noise: Recent results with transmon qubits. Quantum Information Processing, 8 (2-3): 105–115, June 2009. ISSN 1570-0755, 1573-1332. 10.1007/​s11128-009-0100-6.

[19] Hanhee Paik, D. I. Schuster, Lev S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett., 107 (24): 240501, December 2011. ISSN 0031-9007, 1079-7114. https:/​/​doi.org/​10.1103/​PhysRevLett.107.240501.

[20] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard. Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots. Science, 309 (5744): 2180–2184, September 2005. ISSN 0036-8075, 1095-9203. 10.1126/​science.1116955.

[21] D. Rosenberg, D. Kim, R. Das, D. Yost, S. Gustavsson, D. Hover, P. Krantz, A. Melville, L. Racz, G. O. Samach, S. J. Weber, F. Yan, J. Yoder, A. J. Kerman, and W. D. Oliver. 3D integrated superconducting qubits. npj Quantum Information, 3 (42), June 2017. https:/​/​doi.org/​10.1038/​s41534-017-0044-0.

[22] B. Foxen, J. Y. Mutus, E. Lucero, R. Graff, A. Megrant, Yu Chen, C. Quintana, B. Burkett, J. Kelly, E. Jeffrey, Yan Yang, Anthony Yu, K. Arya, R. Barends, Zijun Chen, B. Chiaro, A. Dunsworth, A. Fowler, C. Gidney, M. Giustina, T. Huang, P. Klimov, M. Neeley, C. Neill, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, and John M. Martinis. Qubit compatible superconducting interconnects. Quantum Sci. Technol., 3: 014005, 2017. https:/​/​doi.org/​10.1088/​2058-9565/​aa94fc.

[23] Christian L. Arrington, Kyle S. McKay, Ehren D. Baca, Jonathan J. Coleman, Yves Colombe, Patrick Finnegan, Dustin A. Hite, Andrew E. Hollowell, Robert Jördens, John D. Jost, Dietrich Leibfried, Adam M. Rowen, Ulrich Warring, Martin Weides, Andrew C. Wilson, David J. Wineland, and David P. Pappas. Micro-fabricated stylus ion trap. Review of Scientific Instruments, 84 (8): 085001, August 2013. ISSN 0034-6748. 10.1063/​1.4817304.

[24] D. A. Hite, K. S. McKay, S. Kotler, D. Leibfried, D. J. Wineland, and D. P. Pappas. Measurements of trapped-ion heating rates with exchangeable surfaces in close proximity. MRS Advances, 2 (41): 2189–2197, 2017. ISSN 2059-8521. 10.1557/​adv.2017.14.

[25] K. Eng, R. N. McFarland, and B. E. Kane. High mobility two-dimensional electron system on hydrogen-passivated silicon(111) surfaces. Applied Physics Letters, 87 (5): 052106, July 2005. ISSN 0003-6951. 10.1063/​1.2001734. Publisher: American Institute of Physics.

[26] Arjan J.A. Beukman, Fanming Qu, Ken W. West, Loren N. Pfeiffer, and Leo P. Kouwenhoven. A non-invasive method for nanoscale electrostatic gating of pristine materials. Nano Letters, 15 (10): 6883–6888, 2015. 10.1021/​acs.nanolett.5b02800.

[27] Yun-Pil Shim, Hillary Hurst, Rusko Ruskov, and Charles Tahan. Induced quantum dot probe for material characterization. Appl. Phys. Lett., 114: 152105, 2019. https:/​/​doi.org/​10.1063/​1.5053756.

[28] Ravi Pillarisetty. Large-scale qubit integration, intel corp. In IEEE Quantum Week, 2020.

[29] Mark Friesen, Paul Rugheimer, Donald E. Savage, Max G. Lagally, Daniel W. van der Weide, Robert Joynt, and Mark A. Eriksson. Practical design and simulation of silicon-based quantum-dot qubits. Physical Review B, 67 (12): 121301, March 2003. 10.1103/​PhysRevB.67.121301.

[30] N. S. Lai, W. H. Lim, C. H. Yang, F. A. Zwanenburg, W. A. Coish, F. Qassemi, A. Morello, and A. S. Dzurak. Pauli spin blockade in a highly tunable silicon double quantum dot. Sci Rep, 1 (1): 110, December 2011. ISSN 2045-2322. https:/​/​doi.org/​10.1038/​srep00110.

[31] Daniel Loss and David P. DiVincenzo. Quantum computation with quantum dots. Physical Review A, 57 (1): 120–126, January 1998. 10.1103/​PhysRevA.57.120.

[32] B. E. Kane. A silicon-based nuclear spin quantum computer. Nature, 393 (6681): 133, May 1998. ISSN 1476-4687. 10.1038/​30156.

[33] D. A. Lidar, I. L. Chuang, and K. B. Whaley. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett., 81: 2594–2597, Sep 1998. 10.1103/​PhysRevLett.81.2594. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.81.2594.

[34] D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley. Universal quantum computation with the exchange interaction. Nature, 408 (6810): 339–342, 2000. 10.1038/​35042541. URL https:/​/​doi.org/​10.1038/​35042541.

[35] Jeremy Levy. Universal quantum computation with spin-$1/​2$ pairs and heisenberg exchange. Phys. Rev. Lett., 89: 147902, Sep 2002. 10.1103/​PhysRevLett.89.147902. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.89.147902.

[36] Bryan H. Fong and Stephen M. Wandzura. Universal Quantum Computation and Leakage Reduction in the 3-Qubit Decoherence Free Subsystem. Quantum. Inf. Comput., 11: 1009–1018, February 2011. URL https:/​/​dl.acm.org/​doi/​10.5555/​2230956.2230965.

[37] J. M. Taylor, V. Srinivasa, and J. Medford. Electrically-protected resonant exchange qubits in triple quantum dots. Physical Review Letters, 111 (5): 050502, July 2013. ISSN 0031-9007, 1079-7114. https:/​/​doi.org/​10.1103/​PhysRevLett.111.050502.

[38] Yun-Pil Shim and Charles Tahan. Charge-noise-insensitive gate operations for always-on, exchange-only qubits. Physical Review B, 93 (12): 121410(R), March 2016. ISSN 2469-9950, 2469-9969. https:/​/​doi.org/​10.1103/​PhysRevB.93.121410.

[39] Maximilian Russ and Guido Burkard. Three-electron spin qubits. J. Phys.: Condens. Matter, 29 (39): 393001, 2017. https:/​/​doi.org/​10.1088/​1361-648X/​aa761f.

[40] G. Feher and E. A. Gere. Electron Spin Resonance Experiments on Donors in Silicon. II. Electron Spin Relaxation Effects. Physical Review, 114 (5): 1245–1256, June 1959. 10.1103/​PhysRev.114.1245.

[41] Charles Tahan. Silicon in the quantum limit: Quantum computing and decoherence in silicon architectures. PhD thesis, University of Wisconsin-Madison, August 2005. URL https:/​/​arxiv.org/​abs/​0710.4263.

[42] Rusko Ruskov and Charles Tahan. On-chip cavity quantum phonodynamics with an acceptor qubit in silicon. Physical Review B, 88 (6): 064308, August 2013. ISSN 1098-0121, 1550-235X. 10.1103/​PhysRevB.88.064308. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.88.064308.

[43] Alexei M. Tyryshkin, Shinichi Tojo, John J. L. Morton, Helge Riemann, Nikolai V. Abrosimov, Peter Becker, Hans-Joachim Pohl, Thomas Schenkel, Michael L. W. Thewalt, Kohei M. Itoh, and S. A. Lyon. Electron spin coherence exceeding seconds in high-purity silicon. Nature Materials, 11 (2): 143–147, 2012. 10.1038/​nmat3182. URL https:/​/​doi.org/​10.1038/​nmat3182.

[44] Friedrich Schäffler. High-mobility Si and Ge structures. Semiconductor Science and Technology, 12 (12): 1515, 1997. ISSN 0268-1242. 10.1088/​0268-1242/​12/​12/​001.

[45] Ted Thorbeck and Neil M. Zimmerman. Formation of strain-induced quantum dots in gated semiconductor nanostructures. AIP Advances, 5 (8): 087107, 2015. 10.1063/​1.4928320. URL https:/​/​aip.scitation.org/​doi/​10.1063/​1.4928320.

[46] R. Dombrowski, Chr. Steinebach, Chr. Wittneven, M. Morgenstern, and R. Wiesendanger. Tip-induced band bending by scanning tunneling spectroscopy of the states of the tip-induced quantum dot on inas(110). Phys. Rev. B, 59: 8043–8048, Mar 1999. 10.1103/​PhysRevB.59.8043. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.59.8043.

[47] J. Salfi, B. Voisin, A. Tankasala, J. Bocquel, M. Usman, M. Y. Simmons, L. C. L. Hollenberg, R. Rahman, and S. Rogge. Valley filtering and spatial maps of coupling between silicon donors and quantum dots. Phys. Rev. X, 8: 031049, June 2018. https:/​/​doi.org/​10.1103/​PhysRevX.8.031049.

[48] Rusko Ruskov and Charles Tahan. Quantum-limited measurement of spin qubits via curvature coupling to a cavity. Phys. Rev. B, 99: 245306, April 2019. https:/​/​doi.org/​10.1103/​PhysRevB.99.245306.

[49] D.J. Reilly, C. M. Marcus, M. P. Hanson, and A. C. Gossard. Fast single-charge sensing with a rf quantum point contact. Appl. Phys. Lett., 91: 162101, 2007. https:/​/​doi.org/​10.1063/​1.2794995.

[50] K. D. Petersson, C. G. Smith, D. Anderson, P. Atkinson, G.A.C. Jones, and D. A. Ritchie. Charge and Spin State Readout of a Double Quantum Dot Coupled to a Resonator. Nano. Lett., 10 (8): 2789–2793, 2010. https:/​/​doi.org/​10.1021/​nl100663w.

[51] J. I. Colless, A. C. Mahoney, J. M. Hornibrook, A. C. Doherty, H. Lu, A. C. Gossard, and D. J. Reilly. Dispersive Readout of a Few-Electron Double Quantum Dot with Fast rf Gate Sensors. Phys. Rev. Lett., 110 (4): 046805, January 2013. 10.1103/​PhysRevLett.110.046805.

[52] M. F. Gonzalez-Zalba, S. Barraud, A. J. Ferguson, and A. C. Betz. Probing the limits of gate-based charge sensing. Nat. Commun., 6: 6084, January 2015. ISSN 2041-1723. https:/​/​doi.org/​10.1038/​ncomms7084.

[53] M. Fernando Gonzalez-Zalba, Sergey N. Shevchenko, Sylvain Barraud, J. Robert Johansson, Andrew J. Ferguson, Franco Nori, and Andreas C. Betz. Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor. Nano Letters, 16 (3): 1614–1619, March 2016. ISSN 1530-6984. 10.1021/​acs.nanolett.5b04356.

[54] A. Rossi, R. Zhao, A. S. Dzurak, and M. F. Gonzalez-Zalba. Dispersive readout of a silicon quantum dot with an accumulation-mode gate sensor. Appl. Phys. Lett., 110 (21): 212101, May 2017. ISSN 0003-6951, 1077-3118. 10.1063/​1.4984224.

[55] R. Mizuta, R. M. Otxoa, A. C. Betz, and M. F. Gonzalez-Zalba. Quantum and tunneling capacitance in charge and spin qubits. Phys. Rev. B, 95 (4): 045414, January 2017. 10.1103/​PhysRevB.95.045414.

[56] S. Schaal, S. Barraud, J. J. L. Morton, and M. F. Gonzalez-Zalba. Conditional dispersive readout of a CMOS quantum dot via an integrated transistor circuit. Phys. Rev. Applied, 9: 054016, August 2018. https:/​/​doi.org/​10.1103/​PhysRevApplied.9.054016.

[57] X. Mi, J. V. Cady, D. M. Zajac, P. W. Deelman, and J. R. Petta. Strong Coupling of a Single Electron in Silicon to a Microwave Photon. Science, 355 (6321): 156–158, January 2017. ISSN 0036-8075, 1095-9203. 10.1126/​science.aal2469.

[58] N. Samkharadze, G. Zheng, N. Kalhor, D. Brousse, A. Sammak, U. C. Mendes, A. Blais, G. Scappucci, and L. M. K. Vandersypen. Strong spin-photon coupling in silicon. Science, 359 (6380): 1123–1127, 2018. ISSN 0036-8075. 10.1126/​science.aar4054. URL https:/​/​science.sciencemag.org/​content/​359/​6380/​1123.

[59] Guido Burkard and J. R. Petta. Dispersive readout of valley splittings in cavity-coupled silicon quantum dots. Physical Review B, 94 (19): 195305, November 2016. ISSN 2469-9950, 2469-9969. https:/​/​doi.org/​10.1103/​PhysRevB.94.195305.

[60] Yun-Pil Shim and Charles Tahan. Barrier versus tilt exchange gate operations in spin-based quantum computing. Phys. Rev. B, 97: 155402, Apr 2018. 10.1103/​PhysRevB.97.155402. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.97.155402.

[61] T. A. Baart, M. Shafiei, T. Fujita, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen. Single-spin ccd. Nature Nanotechnology, 11 (4): 330–334, 2016. 10.1038/​nnano.2015.291. URL https:/​/​doi.org/​10.1038/​nnano.2015.291.

[62] A. R. Mills, D. M. Zajac, M. J. Gullans, F. J. Schupp, T. M. Hazard, and J. R. Petta. Shuttling a single charge across a one-dimensional array of silicon quantum dots. Nature Communications, 10 (1): 1063, 2019. 10.1038/​s41467-019-08970-z. URL https:/​/​doi.org/​10.1038/​s41467-019-08970-z.

[63] Elliot J. Connors, JJ Nelson, Haifeng Qiao, Lisa F. Edge, and John M. Nichol. Low-frequency charge noise in si/​sige quantum dots. Phys. Rev. B, 100: 165305, Oct 2019. 10.1103/​PhysRevB.100.165305. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.100.165305.

[64] X. Mi, S. Kohler, and J. R. Petta. Landau-zener interferometry of valley-orbit states in si/​sige double quantum dots. Phys. Rev. B, 98: 161404, Oct 2018. 10.1103/​PhysRevB.98.161404. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.98.161404.

[65] Guoji Zheng, Nodar Samkharadze, Marc L. Noordam, Nima Kalhor, Delphine Brousse, Amir Sammak, Giordano Scappucci, and Lieven M. K. Vandersypen. Rapid gate-based spin read-out in silicon using an on-chip resonator. Nature Nanotechnology, 14 (8): 742–746, 2019. 10.1038/​s41565-019-0488-9. URL https:/​/​doi.org/​10.1038/​s41565-019-0488-9.

[66] D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley. Universal fault-tolerant quantum computation on decoherence-free subspaces. Phys. Rev. Lett., 85: 1758–1761, Aug 2000. 10.1103/​PhysRevLett.85.1758.

[67] Maximilian Russ, J. R. Petta, and Guido Burkard. Quadrupolar exchange-only spin qubit. Phys. Rev. Lett., 121: 177701, Oct 2018. 10.1103/​PhysRevLett.121.177701. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.121.177701.

[68] Sebastian Mehl, Hendrik Bluhm, and David P. DiVincenzo. Fault-tolerant quantum computation for singlet-triplet qubits with leakage errors. Phys. Rev. B, 91: 085419, Feb 2015. 10.1103/​PhysRevB.91.085419. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.91.085419.

[69] Veit Langrock and David P. DiVincenzo. A reset-if-leaked procedure for encoded spin qubits. 2020. URL https:/​/​arxiv.org/​abs/​2012.09517.

[70] Matthew Brooks and Charles Tahan. Hybrid exchange measurement-based qubit operations in semiconductor double quantum dot qubits. 2021. URL https:/​/​arxiv.org/​abs/​2105.12860.

[71] Rusko Ruskov and Charles Tahan. Modulated longitudinal gates on encoded spin qubits via curvature couplings to a superconducting cavity. Phys. Rev. B, 103: 035301, Jan 2021. 10.1103/​PhysRevB.103.035301. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.103.035301.

[72] N.W. Hendrickx, W.I.L. Lawrie, M. Russ, F. van Riggelen, S.L. de Snoo, R.N. Schouten, A. Sammak, G. Scappucci, and M. Veldhorst. A four-qubit germanium quantum processor. Nature, 591: 580–585, 2021. https:/​/​doi.org/​10.1038/​s41586-021-03332-6.

[73] Will J. Hardy, C. Thomas Harris, Yi-Hsin Su, Yen Chuang, Jonathan Moussa, Leon N. Maurer, Jiun-Yun Li, Tzu-Ming Lu, and Dwight R. Luhman. Single and double hole quantum dots in strained ge/​sige quantum wells. Nanotechnology, 30: 215202, 2019. https:/​/​doi.org/​10.1088/​1361-6528/​ab061e.

[74] N. W. Hendrickx, D. P. Franke, A. Sammak, M. Kouwenhoven, D. Sabbagh, L. Yeoh, R. Li, M. L. V. Tagliaferri, M. Virgilio, G. Capellini, G. Scappucci, and M. Veldhorst. Gate-controlled quantum dots and superconductivity in planar germanium. Nature Communications, 9 (2835), 2018. https:/​/​doi.org/​10.1038/​s41467-018-05299-x.

[75] L. Petit, J. M. Boter, H. G. J. Eenink, G. Droulers, M. L. V. Tagliaferri, R. Li, D. P. Franke, K. J. Singh, J. S. Clarke, R. N. Schouten, V. V. Dobrovitski, L. M. K. Vandersypen, and M. Veldhorst. Spin lifetime and charge noise in hot silicon quantum dot qubits. Phys. Rev. Lett., 121: 076801, Aug 2018. 10.1103/​PhysRevLett.121.076801. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.121.076801.

[76] L. Petit, H. G. J. Eenink, M. Russ, W. I. L. Lawrie, N. W. Hendrickx, J. S. Clarke, L. M. K. Vandersypen, and M. Veldhorst. Universal quantum logic in hot silicon qubits. Nature, 580: 355–359, 2020. https:/​/​doi.org/​10.1038/​s41586-020-2170-7. URL http:/​/​arxiv.org/​abs/​1910.05289.

[77] C. H. Yang, R. C. C. Leon, J. C. C. Hwang, A. Saraiva, T. Tanttu, W. Huang, J. Camirand Lemyre, K. W. Chan, K. Y. Tan, F. E. Hudson, K. M. Itoh, A. Morello, M. Pioro-Ladrière, A. Laucht, and A. S. Dzurak. Operation of a silicon quantum processor unit cell above one kelvin. Nature, 580: 350–354, 2020. https:/​/​doi.org/​10.1038/​s41586-020-2171-6.

[78] S.P. Giblin, M. Kataoka, J.D. Fletcher, P. See, T.J.B.M. Janssen, J.P. Griffiths, G.A.C. Jones, I. Farrer, and D.A. Ritchie. Towards a quantum representation of the ampere using single electron pumps. Nature Communications, 3 (930), 2012. https:/​/​doi.org/​10.1038/​ncomms1935.

[79] Michael Stewart. Quantum ampere standard, 2019. URL https:/​/​www.nist.gov/​noac/​technology/​current-and-voltage/​quantum-ampere-standard.

[80] V. Srinivasa, J. M. Taylor, and Charles Tahan. Entangling distant resonant exchange qubits via circuit quantum electrodynamics. Phys. Rev. B, 94: 205421, Nov 2016. 10.1103/​PhysRevB.94.205421. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevB.94.205421.

Cited by

[1] Anasua Chatterjee, Paul Stevenson, Silvano De Franceschi, Andrea Morello, Nathalie P. de Leon, and Ferdinand Kuemmeth, "Semiconductor qubits in practice", Nature Reviews Physics 3 3, 157 (2021).

[2] Nathalie O. de Leon, Kohei M. Itoh, Dohun Kim, Karan K. Mehta, Tracy E. Northup, Hanhee Paik, B. S. Palmer, N. Samarth, Sorawis Sangtawesin, and D. W. Steuerman, "Materials challenges and opportunities for quantum computing hardware", Science 372 6539, eabb2823 (2021).

[3] Peter Stano and Daniel Loss, "Review of performance metrics of spin qubits in gated semiconducting nanostructures", arXiv:2107.06485.

[4] Hao Wu, Po Zhang, John P. T. Stenger, Zhaoen Su, Jun Chen, Ghada Badawy, Sasa Gazibegovic, Erik P. A. M. Bakkers, and Sergey M. Frolov, "Triple Andreev dot chains in semiconductor nanowires", arXiv:2105.08636.

[5] J. Pawłowski, G. Skowron, P. Szumniak, and S. Bednarek, "Spin-Selective Resonant Tunneling Induced by Rashba Spin-Orbit Interaction in Semiconductor Nanowire", Physical Review Applied 15 5, 054066 (2021).

[6] Antonio B. Mei, Ivan Milosavljevic, Amanda L. Simpson, Valerie A. Smetanka, Colin P. Feeney, Shay M. Seguin, Sieu D. Ha, Wonill Ha, and Matthew D. Reed, "Optimization of quantum-dot qubit fabrication via machine learning", Applied Physics Letters 118 20, 204001 (2021).

The above citations are from SAO/NASA ADS (last updated successfully 2021-12-03 00:21:03). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-12-03 00:21:02).