Entanglement characterization using quantum designs

Andreas Ketterer1,2,4, Nikolai Wyderka3,4, and Otfried Gühne4

1Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
2EUCOR Centre for Quantum Science and Quantum Computing, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
3Institut für Theoretische Physik III, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
4Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Str. 3, 57068 Siegen, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We present in detail a statistical approach for the reference-frame-independent detection and characterization of multipartite entanglement based on moments of randomly measured correlation functions. We start by discussing how the corresponding moments can be evaluated with designs, linking methods from group and entanglement theory. Then, we illustrate the strengths of the presented framework with a focus on the multipartite scenario. We discuss a condition for characterizing genuine multipartite entanglement for three qubits, and we prove criteria that allow for a discrimination of $W$-type entanglement for an arbitrary number of qubits.

► BibTeX data

► References

[1] O. Gühne and G. Tóth, Phys. Rep. 474, 1 (2009).
https:/​/​doi.org/​10.1016/​j.physrep.2009.02.004

[2] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Rev. Mod. Phys. 79, 555 (2007).
https:/​/​doi.org/​10.1103/​RevModPhys.79.555

[3] R. Ursin, et al., Nat. Phys. 3, 481 (2007).
https:/​/​doi.org/​10.1038/​nphys629

[4] F. Flamini, N. Spagnolo, and F. Sciarrino, Rep. Prog. Phys. 82, 016001 (2018).
https:/​/​doi.org/​10.1088/​1361-6633/​aad5b2

[5] J. G. Rarity, P. R. Tapster, P. M. Gorman, and P. Knight, New J. Phys. 4, 82 (2002).
https:/​/​doi.org/​10.1088/​1367-2630/​4/​1/​382

[6] M. Aspelmeyer, et al., Science 301, 621 (2003).
https:/​/​doi.org/​10.1126/​science.1085593

[7] P. Villoresi, et al., New J. Phys. 10, 033038 (2008).
https:/​/​doi.org/​10.1088/​1367-2630/​10/​3/​033038

[8] C. Bonato, A. Tomaello, V. Da Deppo, G. Naletto, and P. Villoresi, New J. Phys. 11, 045017 (2009).
https:/​/​doi.org/​10.1088/​1367-2630/​11/​4/​045017

[9] L. Aolita and S. P. Walborn, Phys. Rev. Lett. 98, 100501 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.98.100501

[10] V. D'Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, Nat. Comm. 3, 961 (2012).
https:/​/​doi.org/​10.1038/​ncomms1951

[11] H. Aschauer, J. Calsamiglia, M. Hein, and H. J. Briegel, Quantum Inf. Comput. 4, 383 (2004).
https:/​/​doi.org/​10.26421/​QIC4.5

[12] J. I. de Vicente, Quantum Inf. Comput. 7, 624 (2007).
https:/​/​doi.org/​10.26421/​QIC4.5

[13] J. I. de Vicente, J. Phys. A: Math. Theor. 41, 065309 (2008).
https:/​/​doi.org/​10.1088/​1751-8113/​41/​6/​065309

[14] J. I. de Vicente and M. Huber, Phys. Rev. A 84, 062306 (2011).
https:/​/​doi.org/​10.1103/​PhysRevA.84.062306

[15] P. Badziag, C. Brukner, W. Laskowski, T. Paterek, and M. Żukowski, Phys. Rev. Lett. 100, 140403 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.100.140403

[16] W. Laskowski, M. Markiewicz, T. Paterek, and M. Żukowski, Phys. Rev. A 84, 062305 (2011).
https:/​/​doi.org/​10.1103/​PhysRevA.84.062305

[17] T. Lawson, A. Pappa, B. Bourdoncle, I. Kerenidis, D. Markham, and E. Diamanti, Phys. Rev. A 90, 042336 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.90.042336

[18] C. Klöckl and M. Huber, Phys. Rev. A 91, 042339 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.91.042339

[19] M. C. Tran, B. Dakić, F. Arnault, W. Laskowski, and T. Paterek, Phys. Rev. A 92, 050301(R) (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.92.050301

[20] M. C. Tran, B. Dakić, W. Laskowski, and T. Paterek, Phys. Rev. A 94, 042302 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.042302

[21] A. Ketterer, N. Wyderka, O. Gühne, Phys. Rev. Lett. 122, 120505 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.120505

[22] M. Krebsbach, Bachelor thesis, Albert-Ludwigs-Universität Freiburg (2019).
https:/​/​doi.org/​10.6094/​UNIFR/​150706

[23] A. Elben, B. Vermersch, M. Dalmonte, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 120, 050406 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.120.050406

[24] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller, R. Blatt, C. F. Roos, Science 364, 260 (2019).
https:/​/​doi.org/​10.1126/​science.aau4963

[25] A. Elben, B. Vermersch, C. F. Roos, P. Zoller, Phys. Rev. A 99, 052323 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.052323

[26] L. Knips, J. Dziewior, W. Kłobus, W. Laskowski, T. Paterek, P. J. Shadbolt, H. Weinfurter, and J. D. A. Meinecke, npj Quantum Information 6, 51 (2020).
https:/​/​doi.org/​10.1038/​s41534-020-0281-5

[27] A. Elben, B. Vermersch, R. van Bijnen, C. Kokail, T. Brydges, C. Maier, M. K. Joshi, R. Blatt, C. F. Roos, and P. Zoller, Phys. Rev. Lett. 124, 010504 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.010504

[28] N. Wyderka, F. Huber, and O. Gühne, Phys. Rev. A 97, 060101 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.060101

[29] N. Wyderka and O. Gühne, J. Phys. A: Math. Theor. 53, 345302.
https:/​/​doi.org/​10.1088/​1751-8121/​ab7f0a

[30] C. Eltschka and J. Siewert, Quantum 4, 229 (2020).
https:/​/​doi.org/​10.22331/​q-2020-02-10-229

[31] M. Idel and M. M. Wolf, Lin. Alg. Appl. 471, 76 (2015).
https:/​/​doi.org/​10.1016/​j.laa.2014.12.031

[32] C. Dankert, M.Sc. thesis, University of Waterloo, (2005); also available as e-print quant-ph/​0512217.
arXiv:quant-ph/0512217

[33] P. D. Seymour, T. Zaslavsky, Advances in Mathematics 52, 213 (1984).
https:/​/​doi.org/​10.1016/​0001-8708(84)90022-7

[34] F. G. S. L. Brandão, A. W. Harrow, and M. Horodecki, Phys. Rev. Lett. 116, 170502 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.116.170502

[35] Y. Nakata, C. Hirche, M. Koashi, A. Winter, Phys. Rev. X 7, 021006 (2017).
https:/​/​doi.org/​10.1103/​PhysRevX.7.021006

[36] J. Haferkamp, F. Montealegre-Mora, M. Heinrich, J. Eisert, D. Gross, and I. Roth, arXiv:2002.09524.
arXiv:2002.09524

[37] Z. Webb, Quantum Inf. Comput. 16, 1379 (2016).
https:/​/​doi.org/​10.26421/​QIC16.15-16

[38] H. Zhu, R. Kueng, M. Grassl, and D. Gross, arXiv:1609.08172.
arXiv:1609.08172

[39] D. Gross, K. Audenaert, and J. Eisert, J. Math. Phys. 48, 052104 (2007).
https:/​/​doi.org/​10.1063/​1.2716992

[40] R. H. Hardin and N. J. A. Sloane, Discrete & Computational Geometry 15, 429 (1996).
https:/​/​doi.org/​10.1007/​BF02711518

[41] R. Horodecki and M. Horodecki, Phys. Rev. A 54, 1838 (1996).
https:/​/​doi.org/​10.1103/​PhysRevA.54.1838

[42] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, New York, 2000).
https:/​/​doi.org/​10.1017/​CBO9780511976667

[43] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
https:/​/​doi.org/​10.1103/​RevModPhys.81.865

[44] W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A 62, 062314 (2000).
https:/​/​doi.org/​10.1103/​PhysRevA.62.062314

[45] A. Acín, D. Bruß, M. Lewenstein, and A. Sanpera, Phys. Rev. Lett. 87, 040401 (2001).
https:/​/​doi.org/​10.1103/​PhysRevLett.87.040401

[46] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).
https:/​/​doi.org/​10.1103/​PhysRevLett.86.5188

[47] R. Cleve, D. Gottesman, and H.-K. Lo, Phys. Rev. Lett. 83, 648 (1999).
https:/​/​doi.org/​10.1103/​PhysRevLett.83.648

[48] A. Acín, A. Andrianov, L. Costa, E. Jané, J. I. Latorre, and R. Tarrach, Phys. Rev. Lett. 85, 1560 (2000).
https:/​/​doi.org/​10.1103/​PhysRevLett.85.1560

[49] C. Spee, J. I. de Vicente, and B. Kraus, J. Math. Phys. 57, 052201 (2016).
https:/​/​doi.org/​10.1063/​1.4946895

[50] T. Bastin, P. Mathonet, and E. Solano, Phys. Rev. A 91, 022310 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.91.022310

[51] C. Ritz, C. Spee, and O. Gühne, J. Phys. A: Math. Theor. 52, 335302 (2019).
https:/​/​doi.org/​10.1088/​1751-8121/​ab2f54

[52] H. A. Carteret, A. Higuchi, and A. Sudbery, J. Math. Phys. 41, 7932 (2000).
https:/​/​doi.org/​10.1063/​1.1319516

[53] S. Kıntaş and S. Turgut, J. Math. Phys. 51, 092202 (2010).
https:/​/​doi.org/​10.1063/​1.3481573

[54] J. Maziero, Braz. J. Phys. 45, 575 (2015).
https:/​/​doi.org/​10.1007/​s13538-015-0367-2

[55] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas - Second Edition, (Princeton University Press, Princeton, 2009).
https:/​/​press.princeton.edu/​books/​paperback/​9780691140391/​matrix-mathematics

Cited by

[1] Lukas Knips, "A Moment for Random Measurements", arXiv:2011.10591, Quantum Views 4, 47 (2020).

The above citations are from Crossref's cited-by service (last updated successfully 2020-12-02 22:19:32) and SAO/NASA ADS (last updated successfully 2020-12-02 22:19:33). The list may be incomplete as not all publishers provide suitable and complete citation data.

1 thought on “Entanglement characterization using quantum designs

  1. Pingback: Perspective in Quantum Views by Lukas Knips "A Moment for Random Measurements"