Compositional resource theories of coherence

John H. Selby1,2 and Ciarán M. Lee3

1International Centre for Theory of Quantum Technologies, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
2Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, N2L 2Y5, Canada
3Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT, UK

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum coherence is one of the most important resources in quantum information theory. Indeed, preventing the loss of coherence is one of the most important technical challenges obstructing the development of large-scale quantum computers. Recently, there has been substantial progress in developing mathematical resource theories of coherence, paving the way towards its quantification and control. To date however, these resource theories have only been mathematically formalised within the realms of convex-geometry, information theory, and linear algebra. This approach is limited in scope, and makes it difficult to generalise beyond resource theories of coherence for single system quantum states. In this paper we take a complementary perspective, showing that resource theories of coherence can instead be defined purely compositionally, that is, working with the mathematics of process theories, string diagrams and category theory. This new perspective offers several advantages: i) it unifies various existing approaches to the study of coherence, for example, subsuming both speakable and unspeakable coherence; ii) it provides a general treatment of the compositional multi-system setting; iii) it generalises immediately to the case of quantum channels, measurements, instruments, and beyond rather than just states; iv) it can easily be generalised to the setting where there are multiple distinct sources of decoherence; and, iv) it directly extends to arbitrary process theories, for example, generalised probabilistic theories and Spekkens toy model---providing the ability to operationally characterise coherence rather than relying on specific mathematical features of quantum theory for its description. More importantly, by providing a new, complementary, perspective on the resource of coherence, this work opens the door to the development of novel tools which would not be accessible from the linear algebraic mind set.

One of the biggest barriers to building usable, large-scale quantum computers is the loss of quantum coherence, a key resource underlying quantum superpositions. Given the crucial role of coherence, researchers have begun to develop theories to quantify it as a resource—that is, how it can be manipulated and controlled. Much like our mathematical understanding of how petrol is converted to the energy that powers cars, we want to understand how a quantum computer converts coherence to computation. If we understand how to use it as a resource we will be able to protect quantum computers from losing it too quickly.

To date however, the mathematical understanding of coherence as a resource has been largely focused on studying single qubits. This is a major obstacle for understanding how coherence powers quantum computers, as large-scale quantum computers consist of a huge number of qubits interacting with each other and evolving through time. We need to understand coherence as a resource in this challenging multiple interacting state context if we are to deliver useful quantum computers.

Using category theory—an area of mathematics studying the abstract structures that appear in different branches of mathematics—our paper solves this challenging problem. This provides a roadmap for how coherence should be manipulated and controlled to ensure the correct functioning of large-scale quantum computers.

► BibTeX data

► References

[1] Johan Aberg. Quantifying superposition. arXiv preprint quant-ph/​0612146, 2006.

[2] Mehdi Ahmadi, David Jennings, and Terry Rudolph. The wigner–araki–yanase theorem and the quantum resource theory of asymmetry. New Journal of Physics, 15(1):013057, 2013. doi:http:/​/​​10.1088/​1367-2630/​15/​1/​013057.

[3] Miriam Backens and Ali Nabi Duman. A complete graphical calculus for spekkens’ toy bit theory. Foundations of Physics, 46(1):70–103, 2016. doi:http:/​/​​10.1007/​s10701-015-9957-7.

[4] Howard Barnum, Jonathan Barrett, Marius Krumm, and Markus P Müller. Entropy, majorization and thermodynamics in general probabilistic theories. arXiv preprint arXiv:1508.03107, 2015. doi:http:/​/​​10.4204/​EPTCS.195.4.

[5] Howard Barnum, Oscar CO Dahlsten, Matthew Leifer, and Ben Toner. Nonclassicality without entanglement enables bit commitment. In 2008 IEEE Information Theory Workshop, pages 386–390. IEEE, 2008. doi:http:/​/​​10.1109/​ITW.2008.4578692.

[6] Howard Barnum, Ciarán M Lee, and John H Selby. Oracles and query lower bounds in generalised probabilistic theories. Foundations of physics, 48(8):954–981, 2018. doi:http:/​/​​10.1007/​s10701-018-0198-4.

[7] Howard Barnum and Alexander Wilce. Information processing in convex operational theories. Electronic Notes in Theoretical Computer Science, 270(1):3–15, 2011. doi:http:/​/​​10.1016/​j.entcs.2011.01.002.

[8] Jonathan Barrett. Information processing in generalized probabilistic theories. Physical Review A, 75(3):032304, 2007. doi:http:/​/​​10.1103/​PhysRevA.75.032304.

[9] Jonathan Barrett, Niel de Beaudrap, Matty J Hoban, and Ciarán M Lee. The computational landscape of general physical theories. npj Quantum Information, 5(1):41, 2019. doi:http:/​/​​10.1038/​s41534-019-0156-9.

[10] Tillmann Baumgratz, Marcus Cramer, and Martin B Plenio. Quantifying coherence. Physical review letters, 113(14):140401, 2014.

[11] Fernando GSL Brandao and Gilad Gour. Reversible framework for quantum resource theories. Physical review letters, 115(7):070503, 2015. doi:http:/​/​​10.1103/​PhysRevLett.115.070503.

[12] Giulio Chiribella. Agents, subsystems, and the conservation of information. Entropy, 20(5):358, 2018. doi:http:/​/​​10.3390/​e20050358.

[13] Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti. Informational derivation of quantum theory. Physical Review A, 84(1):012311, 2011. doi:http:/​/​​10.1103/​PhysRevA.84.012311.

[14] Giulio Chiribella and Carlo Maria Scandolo. Entanglement and thermodynamics in general probabilistic theories. New Journal of Physics, 17(10):103027, 2015. doi:http:/​/​​10.1088/​1367-2630/​17/​10/​103027.

[15] Giulio Chiribella and Carlo Maria Scandolo. Microcanonical thermodynamics in general physical theories. New Journal of Physics, 19(12):123043, 2017. doi:http:/​/​​10.1088/​1367-2630/​aa91c7.

[16] Eric Chitambar and Gilad Gour. Comparison of incoherent operations and measures of coherence. Physical Review A, 94(5):052336, 2016. doi:http:/​/​​10.1103/​PhysRevA.94.052336.

[17] Eric Chitambar and Gilad Gour. Quantum resource theories. Reviews of Modern Physics, 91(2):025001, 2019. doi:http:/​/​​10.1103/​RevModPhys.91.025001.

[18] Eric Chitambar and Min-Hsiu Hsieh. Relating the resource theories of entanglement and quantum coherence. Physical review letters, 117(2):020402, 2016. doi:http:/​/​​10.1103/​PhysRevLett.117.020402.

[19] Bob Coecke. Kindergarten quantum mechanics: Lecture notes. In AIP Conference Proceedings, volume 810, pages 81–98. AIP, 2006. doi:http:/​/​​10.1063/​1.2158713.

[20] Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and diagrammatics. New Journal of Physics, 13(4):043016, 2011. doi:http:/​/​​10.1088/​1367-2630/​13/​4/​043016.

[21] Bob Coecke, Ross Duncan, Aleks Kissinger, and Quanlong Wang. Strong complementarity and non-locality in categorical quantum mechanics. In Proceedings of the 2012 27th Annual IEEE/​ACM Symposium on Logic in Computer Science, pages 245–254. IEEE Computer Society, 2012. doi:http:/​/​​10.1109/​LICS.2012.35.

[22] Bob Coecke, Bill Edwards, and Robert W Spekkens. Phase groups and the origin of non-locality for qubits. Electronic Notes in Theoretical Computer Science, 270(2):15–36, 2011. doi:http:/​/​​10.1016/​j.entcs.2011.01.021.

[23] Bob Coecke, Tobias Fritz, and Robert W Spekkens. A mathematical theory of resources. Information and Computation, 250:59–86, 2016. doi:http:/​/​​10.1016/​j.ic.2016.02.008.

[24] Bob Coecke and Aleks Kissinger. Categorical quantum mechanics i: causal quantum processes, 2015. doi:http:/​/​​10.1093/​oso/​9780198748991.003.0012.

[25] Bob Coecke and Aleks Kissinger. Picturing quantum processes. Cambridge University Press, 2017. doi:http:/​/​​10.1017/​9781316219317.

[26] Bob Coecke, John Selby, and Sean Tull. Two roads to classicality. arXiv preprint arXiv:1701.07400, 2017. doi:http:/​/​​10.4204/​EPTCS.266.7.

[27] Lídia Del Rio, Lea Kraemer, and Renato Renner. Resource theories of knowledge. arXiv preprint arXiv:1511.08818, 2015.

[28] Andrés F Ducuara, Patryk Lipka-Bartosik, and Paul Skrzypczyk. Multi-object operational tasks for convex quantum resource theories. arXiv preprint arXiv:2004.12898, 2020.

[29] Daniel Ebler, Sina Salek, and Giulio Chiribella. Enhanced communication with the assistance of indefinite causal order. Physical review letters, 120(12):120502, 2018. doi:http:/​/​​10.1103/​PhysRevLett.120.120502.

[30] Tobias Fritz. Resource convertibility and ordered commutative monoids. Mathematical Structures in Computer Science, 27(6):850–938, 2017. doi:http:/​/​​10.1017/​S0960129515000444.

[31] Andrew JP Garner. Interferometric computation beyond quantum theory. Foundations of Physics, 48(8):886–909, 2018. doi:http:/​/​​10.1007/​s10701-018-0142-7.

[32] Stefano Gogioso. Fantastic quantum theories and where to find them. arXiv preprint arXiv:1703.10576, 2017.

[33] Stefano Gogioso and Carlo Maria Scandolo. Categorical probabilistic theories. arXiv preprint arXiv:1701.08075, 2017. doi:http:/​/​​10.4204/​EPTCS.266.23.

[34] Gilad Gour. Quantum resource theories in the single-shot regime. Physical Review A, 95(6):062314, 2017. doi:http:/​/​​10.1103/​PhysRevA.95.062314.

[35] Gilad Gour, Markus P Müller, Varun Narasimhachar, Robert W Spekkens, and Nicole Yunger Halpern. The resource theory of informational nonequilibrium in thermodynamics. Physics Reports, 583:1–58, 2015. doi:http:/​/​​10.1016/​j.physrep.2015.04.003.

[36] Gilad Gour and Andreas Winter. How to quantify a dynamical quantum resource. Physical review letters, 123(15):150401, 2019. doi:http:/​/​​10.1103/​PhysRevLett.123.150401.

[37] Thomas Guff, Nathan A McMahon, Yuval R Sanders, and Alexei Gilchrist. A resource theory of quantum measurements. arXiv preprint arXiv:1902.08490, 2019.

[38] Lucien Hardy. Quantum theory from five reasonable axioms. arXiv preprint quant-ph/​0101012, 2001.

[39] Lucien Hardy. Reformulating and reconstructing quantum theory. arXiv preprint arXiv:1104.2066, 2011.

[40] Lucien Hardy and William K Wootters. Limited holism and real-vector-space quantum theory. Foundations of Physics, 42(3):454–473, 2012. doi:http:/​/​​10.1007/​s10701-011-9616-6.

[41] James Hefford and Stefano Gogioso. Hyper-decoherence in density hypercubes. arXiv preprint arXiv:2003.08318, 2020.

[42] Chris Heunen, Aleks Kissinger, and Peter Selinger. Completely positive projections and biproducts. arXiv preprint arXiv:1308.4557, 2013. doi:http:/​/​​10.4204/​EPTCS.171.7.

[43] Michal Horodecki and Jonathan Oppenheim. (quantumness in the context of) resource theories. International Journal of Modern Physics B, 27(01n03):1345019, 2013. doi:http:/​/​​10.1142/​S0217979213450197.

[44] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Reviews of modern physics, 81(2):865, 2009. doi:http:/​/​​10.1103/​RevModPhys.81.865.

[45] Erich Joos, H Dieter Zeh, Claus Kiefer, Domenico JW Giulini, Joachim Kupsch, and Ion-Olimpiu Stamatescu. Decoherence and the appearance of a classical world in quantum theory. Springer Science & Business Media, 2013. doi:http:/​/​​10.1007/​978-3-662-05328-7.

[46] Marius Krumm, Howard Barnum, Jonathan Barrett, and Markus P Müller. Thermodynamics and the structure of quantum theory. New Journal of Physics, 19(4):043025, 2017. doi:http:/​/​​10.1088/​1367-2630/​aa68ef.

[47] Marius Krumm and Markus P Müller. Quantum computation is the unique reversible circuit model for which bits are balls. npj Quantum Information, 5(1):7, 2019. doi:http:/​/​​10.1038/​s41534-018-0123-x.

[48] Ludovico Lami, Carlos Palazuelos, and Andreas Winter. Ultimate data hiding in quantum mechanics and beyond. Communications in Mathematical Physics, 361(2):661–708, 2018. doi:http:/​/​​10.1007/​s00220-018-3154-4.

[49] Ciarán M Lee. Device-independent certification of non-classical joint measurements via causal models. npj Quantum Information, 5(1):34, 2019. doi:http:/​/​​10.1038/​s41534-019-0151-1.

[50] Ciarán M Lee and Jonathan Barrett. Computation in generalised probabilisitic theories. New Journal of Physics, 17(8):083001, 2015. doi:http:/​/​​10.1088/​1367-2630/​17/​8/​083001.

[51] Ciarán M Lee and Matty J Hoban. Bounds on the power of proofs and advice in general physical theories. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2190):20160076, 2016. doi:http:/​/​​10.1098/​rspa.2016.0076.

[52] Ciarán M Lee and Matty J Hoban. The information content of systems in general physical theories. Electronic Proceedings in Theoretical Computer Science 214, 22-28, arXiv preprint arXiv:1606.06801, 2016. doi:http:/​/​​10.4204/​EPTCS.214.5.

[53] Ciarán M Lee and Matty J Hoban. Towards device-independent information processing on general quantum networks. Physical review letters, 120(2):020504, 2018. doi:http:/​/​​10.1103/​PhysRevLett.120.020504.

[54] Ciarán M Lee and John H Selby. Deriving grover's lower bound from simple physical principles. New Journal of Physics, 18(9):093047, 2016. doi:http:/​/​​10.1088/​1367-2630/​18/​9/​093047.

[55] Ciarán M Lee and John H Selby. Generalised phase kick-back: the structure of computational algorithms from physical principles. New Journal of Physics, 18(3):033023, 2016. doi:http:/​/​​10.1088/​1367-2630/​18/​3/​033023.

[56] Ciarán M Lee and John H Selby. A no-go theorem for theories that decohere to quantum mechanics. arXiv preprint arXiv:1701.07449, 2017. doi:http:/​/​​10.1098/​rspa.2017.0732.

[57] Federico Levi and Florian Mintert. A quantitative theory of coherent delocalization. New Journal of Physics, 16(3):033007, 2014. doi:http:/​/​​10.1088/​1367-2630/​16/​3/​033007.

[58] Yunchao Liu and Xiao Yuan. Operational resource theory of quantum channels. Physical Review Research, 2(1):012035, 2020. doi:http:/​/​​10.1103/​PhysRevResearch.2.012035.

[59] Zi-Wen Liu, Xueyuan Hu, and Seth Lloyd. Resource destroying maps. Physical review letters, 118(6):060502, 2017. doi:http:/​/​​10.1103/​PhysRevLett.118.060502.

[60] Zi-Wen Liu and Andreas Winter. Resource theories of quantum channels and the universal role of resource erasure. arXiv preprint arXiv:1904.04201, 2019.

[61] Matteo Lostaglio, Kamil Korzekwa, David Jennings, and Terry Rudolph. Quantum coherence, time-translation symmetry, and thermodynamics. Physical review X, 5(2):021001, 2015. doi:http:/​/​​10.1103/​PhysRevX.5.021001.

[62] AW Marshall and I Olkin. Inequalities: Theory of majorization and its applications, 2011. doi:http:/​/​​10.1007/​978-0-387-68276-1.

[63] Iman Marvian and Robert W Spekkens. How to quantify coherence: Distinguishing speakable and unspeakable notions. Physical Review A, 94(5):052324, 2016. doi:http:/​/​​10.1103/​PhysRevA.94.052324.

[64] Michael A Nielsen. Conditions for a class of entanglement transformations. Physical Review Letters, 83(2):436, 1999. doi:http:/​/​​10.1103/​PhysRevLett.83.436.

[65] Michał Oszmaniec and Tanmoy Biswas. Operational relevance of resource theories of quantum measurements. Quantum, 3:133, 2019. doi:http:/​/​​10.22331/​q-2019-04-26-133.

[66] Martin B Plenio and Shashank S Virmani. An introduction to entanglement theory. In Quantum Information and Coherence, pages 173–209. Springer, 2014. doi:http:/​/​​10.1007/​978-3-319-04063-9_8.

[67] Jonathan G Richens, John H Selby, and Sabri W Al-Safi. Entanglement is necessary for emergent classicality in all physical theories. Physical review letters, 119(8):080503, 2017. doi:http:/​/​​10.1103/​PhysRevLett.119.080503.

[68] Denis Rosset, Francesco Buscemi, and Yeong-Cherng Liang. Resource theory of quantum memories and their faithful verification with minimal assumptions. Physical Review X, 8(2):021033, 2018. doi:http:/​/​​10.1103/​PhysRevX.8.021033.

[69] Gaurav Saxena, Eric Chitambar, and Gilad Gour. Dynamical resource theory of quantum coherence. Physical Review Research, 2(2):023298, 2020. doi:https:/​/​​10.1103/​PhysRevResearch.2.023298.

[70] Carlo Maria Scandolo, Roberto Salazar, Jarosław K Korbicz, and Paweł Horodecki. Is it possible to be objective in every physical theory? arXiv preprint arXiv:1805.12126, 2018.

[71] David Schmid, Denis Rosset, and Francesco Buscemi. Quantifying losr nonclassicality across arbitrary resource types. arXiv preprint arXiv:1909.04065, 2019.

[72] John Selby and Bob Coecke. Leaks: quantum, classical, intermediate and more. Entropy, 19(4):174, 2017. doi:http:/​/​​10.3390/​e19040174.

[73] John H Selby, Carlo Maria Scandolo, and Bob Coecke. Reconstructing quantum theory from diagrammatic postulates. arXiv preprint arXiv:1802.00367, 2018.

[74] John H Selby and Jamie Sikora. How to make unforgeable money in generalised probabilistic theories. arXiv preprint arXiv:1803.10279, 2018. doi:http:/​/​​10.22331/​q-2018-11-02-103.

[75] John Harry Selby. A process theoretic triptych: two roads to the emergence of classicality, reconstructing quantum theory from diagrams, looking for post-quantum theories. PhD thesis, Imperial College London, 2017.

[76] Peter Selinger. Idempotents in dagger categories. Electronic Notes in Theoretical Computer Science, 210:107–122, 2008. doi:http:/​/​​10.1016/​j.entcs.2008.04.021.

[77] Jamie Sikora and John Selby. Simple proof of the impossibility of bit commitment in generalized probabilistic theories using cone programming. Physical Review A, 97(4):042302, 2018. doi:http:/​/​​10.1103/​PhysRevA.97.042302.

[78] Jamie Sikora and John H Selby. On the impossibility of coin-flipping in generalized probabilistic theories via discretizations of semi-infinite programs. arXiv preprint arXiv:1901.04876, 2019.

[79] Carlo Sparaciari. Multi-resource theories and applications to quantum thermodynamics. PhD thesis, UCL (University College London), 2018.

[80] Carlo Sparaciari, Lídia Del Rio, Carlo Maria Scandolo, Philippe Faist, and Jonathan Oppenheim. The first law of general quantum resource theories. arXiv preprint arXiv:1806.04937, 2018.

[81] Carlo Sparaciari, Jonathan Oppenheim, and Tobias Fritz. Resource theory for work and heat. Physical Review A, 96(5):052112, 2017. doi:http:/​/​​10.1103/​PhysRevA.96.052112.

[82] Robert W Spekkens. Evidence for the epistemic view of quantum states: A toy theory. Physical Review A, 75(3):032110, 2007. doi:http:/​/​​10.1103/​PhysRevA.75.032110.

[83] Robert W Spekkens. Quasi-quantization: classical statistical theories with an epistemic restriction. In Quantum Theory: Informational Foundations and Foils, pages 83–135. Springer, 2016. doi:http:/​/​​10.1007/​978-94-017-7303-4_4.

[84] Alexander Streltsov, Gerardo Adesso, and Martin B Plenio. Colloquium: Quantum coherence as a resource. Reviews of Modern Physics, 89(4):041003, 2017. doi:http:/​/​​10.1103/​RevModPhys.89.041003.

[85] Alexander Streltsov, Swapan Rana, Manabendra Nath Bera, and Maciej Lewenstein. Towards resource theory of coherence in distributed scenarios. Physical Review X, 7(1):011024, 2017. doi:http:/​/​​10.1103/​PhysRevX.7.011024.

[86] Ryuji Takagi and Bartosz Regula. General resource theories in quantum mechanics and beyond: operational characterization via discrimination tasks. arXiv preprint arXiv:1901.08127, 2019. doi:http:/​/​​10.1103/​PhysRevX.9.031053.

[87] Andreas Winter and Dong Yang. Operational resource theory of coherence. Physical review letters, 116(12):120404, 2016. doi:http:/​/​​10.1103/​PhysRevLett.116.120404.

[88] Elie Wolfe, David Schmid, Ana Belén Sainz, Ravi Kunjwal, and Robert W Spekkens. Quantifying bell: The resource theory of nonclassicality of common-cause boxes. Quantum, 4:280, 2020. doi:http:/​/​​10.22331/​q-2020-06-08-280.

[89] Benjamin Yadin, Jiajun Ma, Davide Girolami, Mile Gu, and Vlatko Vedral. Quantum processes which do not use coherence. Physical Review X, 6(4):041028, 2016. doi:http:/​/​​10.1103/​PhysRevX.6.041028.

[90] Wojciech Hubert Zurek. Decoherence, einselection, and the quantum origins of the classical. Reviews of modern physics, 75(3):715, 2003. doi:http:/​/​​10.1103/​RevModPhys.75.715.

[91] Wojciech Hubert Zurek. Quantum darwinism. Nature physics, 5(3):181, 2009. doi:http:/​/​​10.1038/​nphys1202.

Cited by

[1] Debasis Mondal and Dagomir Kaszlikowski, "Self-testing of quantum states using symmetric local hidden state model", arXiv:1911.07517.

[2] David Schmid, John H. Selby, and Robert W. Spekkens, "Unscrambling the omelette of causation and inference: The framework of causal-inferential theories", arXiv:2009.03297.

The above citations are from SAO/NASA ADS (last updated successfully 2020-09-22 11:22:37). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2020-09-22 11:22:36).