Concepts of work in autonomous quantum heat engines

Wolfgang Niedenzu1, Marcus Huber2, and Erez Boukobza3,4

1Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
2Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften, Boltzmanngasse 3, A-1090 Vienna, Austria
3School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
4Chemistry Department, Nuclear Research Center Negev, Israel

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


One of the fundamental questions in quantum thermodynamics concerns the decomposition of energetic changes into heat and work. Contrary to classical engines, the entropy change of the piston cannot be neglected in the quantum domain. As a consequence, different concepts of work arise, depending on the desired task and the implied capabilities of the agent using the work generated by the engine. Each work quantifier---from ergotropy to non-equilibrium free energy---has well defined operational interpretations. We analyse these work quantifiers for a heat-pumped three-level maser and derive the respective engine efficiencies. In the classical limit of strong maser intensities the engine efficiency converges towards the Scovil--Schulz-DuBois maser efficiency, irrespective of the work quantifier.

► BibTeX data

► References

[1] H. E. D. Scovil and E. O. Schulz-DuBois, Three-Level Masers as Heat Engines, Phys. Rev. Lett. 2, 262 (1959).

[2] R. Alicki, The quantum open system as a model of the heat engine, J. Phys. A 12, L103 (1979).

[3] R. Kosloff, A quantum mechanical open system as a model of a heat engine, J. Chem. Phys. 80, 1625 (1984).

[4] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd ed. (John Wiley & Sons, Inc., New York, 1985).

[5] Y. A. Çengel and M. A. Boles, Thermodynamics: An Engineering Approach, eighth ed. (McGraw-Hill Education, New York, 2015).

[6] E. Geva and R. Kosloff, A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/​2 systems as the working fluid, J. Chem. Phys. 96, 3054 (1992).

[7] R. Kosloff, Quantum Thermodynamics: A Dynamical Viewpoint, Entropy 15, 2100 (2013).

[8] D. Gelbwaser-Klimovsky, W. Niedenzu, and G. Kurizki, Thermodynamics of Quantum Systems Under Dynamical Control, Adv. At. Mol. Opt. Phys. 64, 329 (2015).

[9] S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemp. Phys. 57, 1 (2016).

[10] R. Kosloff and Y. Rezek, The Quantum Harmonic Otto Cycle, Entropy 19, 136 (2017).

[11] F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, eds., Thermodynamics in the Quantum Regime (Springer, Cham, 2019).

[12] J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin, Experimental realization of a Szilard engine with a single electron, Proc. Natl. Acad. Sci. USA 111, 13786 (2014).

[13] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer, A single-atom heat engine, Science 352, 325 (2016).

[14] J. Klaers, S. Faelt, A. Imamoglu, and E. Togan, Squeezed Thermal Reservoirs as a Resource for a Nanomechanical Engine beyond the Carnot Limit, Phys. Rev. X 7, 031044 (2017).

[15] N. V. Horne, D. Yum, T. Dutta, P. Hänggi, J. Gong, D. Poletti, and M. Mukherjee, Single atom energy-conversion device with a quantum load, arXiv preprint arXiv:1812.01303 (2018).

[16] J. Klatzow, J. N. Becker, P. M. Ledingham, C. Weinzetl, K. T. Kaczmarek, D. J. Saunders, J. Nunn, I. A. Walmsley, R. Uzdin, and E. Poem, Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines, Phys. Rev. Lett. 122, 110601 (2019).

[17] F. Tonner and G. Mahler, Autonomous quantum thermodynamic machines, Phys. Rev. E 72, 066118 (2005).

[18] A. Roulet, S. Nimmrichter, J. M. Arrazola, S. Seah, and V. Scarani, Autonomous rotor heat engine, Phys. Rev. E 95, 062131 (2017).

[19] D. Gelbwaser-Klimovsky, R. Alicki, and G. Kurizki, Work and energy gain of heat-pumped quantized amplifiers, EPL (Europhys. Lett.) 103, 60005 (2013).

[20] D. Gelbwaser-Klimovsky and G. Kurizki, Heat-machine control by quantum-state preparation: From quantum engines to refrigerators, Phys. Rev. E 90, 022102 (2014).

[21] A. Levy, L. Diósi, and R. Kosloff, Quantum flywheel, Phys. Rev. A 93, 052119 (2016).

[22] A. Ghosh, D. Gelbwaser-Klimovsky, W. Niedenzu, A. I. Lvovsky, I. Mazets, M. O. Scully, and G. Kurizki, Two-level masers as heat-to-work converters, Proc. Natl. Acad. Sci. U.S.A. 115, 9941 (2018).

[23] C. Teo, U. Bissbort, and D. Poletti, Converting heat into directed transport on a tilted lattice, Phys. Rev. E 95, 030102 (2017).

[24] S. Seah, S. Nimmrichter, and V. Scarani, Work production of quantum rotor engines, New J. Phys. 20, 043045 (2018).

[25] A. Mari, A. Farace, and V. Giovannetti, Quantum optomechanical piston engines powered by heat, J. Phys. B: At. Mol. Opt. Phys. 48, 175501 (2015).

[26] D. von Lindenfels, O. Gräb, C. T. Schmiegelow, V. Kaushal, J. Schulz, M. T. Mitchison, J. Goold, F. Schmidt-Kaler, and U. G. Poschinger, Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel, Phys. Rev. Lett. 123, 080602 (2019).

[27] W. Pusz and S. L. Woronowicz, Passive states and KMS states for general quantum systems, Commun. Math. Phys. 58, 273 (1978).

[28] A. Lenard, Thermodynamical proof of the Gibbs formula for elementary quantum systems, J. Stat. Phys. 19, 575 (1978).

[29] A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen, Maximal work extraction from finite quantum systems, EPL (Europhys. Lett.) 67, 565 (2004).

[30] S. Deffner and E. Lutz, Nonequilibrium work distribution of a quantum harmonic oscillator, Phys. Rev. E 77, 021128 (2008).

[31] O. C. O. Dahlsten, R. Renner, E. Rieper, and V. Vedral, Inadequacy of von Neumann entropy for characterizing extractable work, New J. Phys. 13, 053015 (2011).

[32] R. Alicki and M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E 87, 042123 (2013).

[33] R. Dorner, S. R. Clark, L. Heaney, R. Fazio, J. Goold, and V. Vedral, Extracting Quantum Work Statistics and Fluctuation Theorems by Single-Qubit Interferometry, Phys. Rev. Lett. 110, 230601 (2013).

[34] K. V. Hovhannisyan, M. Perarnau-Llobet, M. Huber, and A. Acín, Entanglement Generation is Not Necessary for Optimal Work Extraction, Phys. Rev. Lett. 111, 240401 (2013).

[35] P. Skrzypczyk, A. J. Short, and S. Popescu, Work extraction and thermodynamics for individual quantum systems, Nat. Commun. 5, 4185 (2014).

[36] C. Elouard, M. Richard, and A. Auffèves, Reversible work extraction in a hybrid opto-mechanical system, New J. Phys. 17, 055018 (2015).

[37] M. Perarnau-Llobet, K. V. Hovhannisyan, M. Huber, P. Skrzypczyk, N. Brunner, and A. Acín, Extractable Work from Correlations, Phys. Rev. X 5, 041011 (2015).

[38] E. G. Brown, N. Friis, and M. Huber, Passivity and practical work extraction using Gaussian operations, New J. Phys. 18, 113028 (2016).

[39] R. Gallego, J. Eisert, and H. Wilming, Thermodynamic work from operational principles, New J. Phys. 18, 103017 (2016).

[40] J. M. Horowitz and M. Esposito, Work producing reservoirs: Stochastic thermodynamics with generalized Gibbs ensembles, Phys. Rev. E 94, 020102 (2016).

[41] K. Korzekwa, M. Lostaglio, J. Oppenheim, and D. Jennings, The extraction of work from quantum coherence, New J. Phys. 18, 023045 (2016).

[42] P. Talkner and P. Hänggi, Aspects of quantum work, Phys. Rev. E 93, 022131 (2016).

[43] N. Lörch, C. Bruder, N. Brunner, and P. P. Hofer, Optimal work extraction from quantum states by photo-assisted Cooper pair tunneling, Quantum Sci. Technol. 3, 035014 (2018).

[44] E. Bäumer, M. Lostaglio, M. Perarnau-Llobet, and R. Sampaio, Fluctuating Work in Coherent Quantum Systems: Proposals and Limitations, in Thermodynamics in the Quantum Regime, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer, Cham, 2019) pp. 275–300.

[45] A. Tobalina, I. Lizuain, and J. G. Muga, Vanishing efficiency of speeded-up quantum Otto engines, arXiv preprint arXiv:1906.07473 (2019).

[46] J. Górecki and W. Pusz, Passive states for finite classical systems, Lett. Math. Phys. 4, 433 (1980).

[47] H. A. M. Daniëls, Passivity and equilibrium for classical Hamiltonian systems, J. Math. Phys. 22, 843 (1981).

[48] J. da Providência and C. Fiolhais, Variational formulation of the Vlasov equation, J. Phys. A: Math. Gen. 20, 3877 (1987).

[49] E. Geva and R. Kosloff, The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier, J. Chem. Phys. 104, 7681 (1996).

[50] E. Boukobza and D. J. Tannor, Thermodynamic analysis of quantum light amplification, Phys. Rev. A 74, 063822 (2006).

[51] K. Sandner and H. Ritsch, Temperature Gradient Driven Lasing and Stimulated Cooling, Phys. Rev. Lett. 109, 193601 (2012).

[52] E. Boukobza and H. Ritsch, Breaking the Carnot limit without violating the second law: A thermodynamic analysis of off-resonant quantum light generation, Phys. Rev. A 87, 063845 (2013).

[53] Y. Perl, Y. B. Band, and E. Boukobza, Thermodynamic output of single-atom quantum optical amplifiers and their phase-space fingerprint, Phys. Rev. A 95, 053823 (2017).

[54] D. F. Walls and G. J. Milburn, Quantum Optics, 1st ed. (Springer-Verlag, Berlin, 1994).

[55] W. Niedenzu, D. Gelbwaser-Klimovsky, A. G. Kofman, and G. Kurizki, On the operation of machines powered by quantum non-thermal baths, New J. Phys. 18, 083012 (2016).

[56] N. Friis, G. Vitagliano, M. Malik, and M. Huber, Entanglement certification from theory to experiment, Nat. Rev. Phys. 1, 72 (2018).

[57] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).

[58] P. Faist and R. Renner, Fundamental Work Cost of Quantum Processes, Phys. Rev. X 8, 021011 (2018).

[59] A. Tavakoli, G. Haack, M. Huber, N. Brunner, and J. B. Brask, Heralded generation of maximal entanglement in any dimension via incoherent coupling to thermal baths, Quantum 2, 73 (2018).

[60] P. Erker, M. T. Mitchison, R. Silva, M. P. Woods, N. Brunner, and M. Huber, Autonomous Quantum Clocks: Does Thermodynamics Limit Our Ability to Measure Time?, Phys. Rev. X 7, 031022 (2017).

[61] M. T. Mitchison, M. P. Woods, J. Prior, and M. Huber, Coherence-assisted single-shot cooling by quantum absorption refrigerators, New J. Phys. 17, 115013 (2015).

[62] E. T. Jaynes, The Gibbs Paradox, in Maximum Entropy and Bayesian Methods, edited by C. R. Smith, G. J. Erickson, and P. O. Neudorfer (Springer, Dordrecht, 1992) pp. 1–21.

[63] R. Alicki, From the GKLS Equation to the Theory of Solar and Fuel Cells, Open Syst. Inf. Dyn. 24, 1740007 (2017).

[64] P. Boes, H. Wilming, J. Eisert, and R. Gallego, Statistical ensembles without typicality, Nat. Commun. 9, 1022 (2018).

[65] M. N. Bera, A. Riera, M. Lewenstein, Z. B. Khanian, and A. Winter, Thermodynamics as a Consequence of Information Conservation, Quantum 3, 121 (2019).

[66] P. Boes, J. Eisert, R. Gallego, M. P. Müller, and H. Wilming, Von Neumann Entropy from Unitarity, Phys. Rev. Lett. 122, 210402 (2019).

[67] H. Wilming, T. R. de Oliveira, A. J. Short, and J. Eisert, Equilibration Times in Closed Quantum Many-Body Systems, in Thermodynamics in the Quantum Regime, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer, Cham, 2019) pp. 435–455.

[68] F. Schwabl, Statistical Mechanics, 2nd ed. (Springer-Verlag, Berlin Heidelberg, 2006).

[69] M. Esposito and C. V. den Broeck, Second law and Landauer principle far from equilibrium, EPL (Europhys. Lett.) 95, 40004 (2011).

[70] B. Gardas and S. Deffner, Thermodynamic universality of quantum Carnot engines, Phys. Rev. E 92, 042126 (2015).

[71] J. M. R. Parrondo, J. M. Horowitz, and T. Sagawa, Thermodynamics of information, Nat. Phys. 11, 131 (2015).

[72] E. Boukobza and D. J. Tannor, Thermodynamic analysis of quantum light purification, Phys. Rev. A 78, 013825 (2008).

[73] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997).

[74] S. Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance (Bachelier, Paris, 1824).

[75] K. Mølmer, Quantum entanglement and classical behaviour, J.Mod. Opt. 44, 1937 (1997a).

[76] S. M. Barnett and D. T. Pegg, Phase in quantum optics, J. Phys. A: Math. Gen. 19, 3849 (1986).

[77] M. Lewenstein and L. You, Quantum Phase Diffusion of a Bose-Einstein Condensate, Phys. Rev. Lett. 77, 3489 (1996).

[78] K. Mølmer, Optical coherence: A convenient fiction, Phys. Rev. A 55, 3195 (1997b).

[79] H. M. Wiseman, Defining the (atom) laser, Phys. Rev. A 56, 2068 (1997).

[80] T. Rudolph and B. C. Sanders, Requirement of Optical Coherence for Continuous-Variable Quantum Teleportation, Phys. Rev. Lett. 87, 077903 (2001).

[81] S. J. van Enk and C. A. Fuchs, Quantum State of an Ideal Propagating Laser Field, Phys. Rev. Lett. 88, 027902 (2001).

[82] H. M. Wiseman and J. A. Vaccaro, Atom lasers, coherent states, and coherence. I. Physically realizable ensembles of pure states, Phys. Rev. A 65, 043605 (2002).

[83] H. M. Wiseman, Optical coherence and teleportation: why a laser is a clock, and not a quantum channel, Proc. SPIE 5111, 78 (2003).

[84] K. Nemoto and S. L. Braunstein, Quantum coherence: myth or fact?, Phys. Lett. A 333, 378 (2004).

[85] D. T. Pegg and J. Jeffers, Quantum nature of laser light, J. Mod. Opt. 52, 1835 (2005).

[86] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Dialogue concerning two views on quantum coherence: factist and fictionist, Int. J. Quantum Inf. 4, 17 (2006).

[87] S. D. Bartlett, T. Rudolph, and R. W. Spekkens, Reference frames, superselection rules, and quantum information, Rev. Mod. Phys. 79, 555 (2007).

[88] D. T. Pegg, Physical properties of a laser beam and the intracavity quantum state, Phys. Lett. A 376, 2100 (2012).

[89] H. M. Wiseman, How many principles does it take to change a light bulb…into a laser?, Phys. Scr. 91, 033001 (2016).

[90] L. Loveridge, P. Busch, and T. Miyadera, Relativity of quantum states and observables, EPL (Europhys. Lett.) 117, 40004 (2017).

[91] S.-W. Li, M. B. Kim, G. S. Agarwal, and M. O. Scully, Quantum statistics of a single-atom Scovil–Schulz-DuBois heat engine, Phys. Rev. A 96, 063806 (2017).

[92] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).

[93] S. Krämer, D. Plankensteiner, L. Ostermann, and H. Ritsch, QuantumOptics.jl: A Julia framework for simulating open quantum systems, Comput. Phys. Commun. 227, 109 (2018).

[94] A. Levy and R. Kosloff, The local approach to quantum transport may violate the second law of thermodynamics, EPL (Europhys. Lett.) 107, 20004 (2014).

[95] P. P. Hofer, M. Perarnau-Llobet, L. D. M. Miranda, G. Haack, R. Silva, J. B. Brask, and N. Brunner, Markovian master equations for quantum thermal machines: local versus global approach, New J. Phys. 19, 123037 (2017).

[96] J. O. González, L. A. Correa, G. Nocerino, J. P. Palao, D. Alonso, and G. Adesso, Testing the Validity of the `Local' and `Global' GKLS Master Equations on an Exactly Solvable Model, Open Syst. Inf. Dyn. 24, 1740010 (2017).

[97] H. Tijms, Understanding Probability, 3rd ed. (Cambridge University Press, Cambridge, 2012).

[98] M. O. Scully, Laser Entropy, arXiv preprint arXiv:1708.06642 (2017).

Cited by

[1] Kenza Hammam, Yassine Hassouni, Rosario Fazio, and Gonzalo Manzano, "Optimizing autonomous thermal machines powered by energetic coherence", New Journal of Physics 23 4, 043024 (2021).

[2] M. Hamed Mohammady, "Self-consistency of the two-point energy measurement protocol", Physical Review A 103 4, 042214 (2021).

[3] Sergi Julià-Farré, Tymoteusz Salamon, Arnau Riera, Manabendra N. Bera, and Maciej Lewenstein, "Bounds on the capacity and power of quantum batteries", Physical Review Research 2 2, 023113 (2020).

[4] Antoine Rignon-Bret, Giacomo Guarnieri, John Goold, and Mark T. Mitchison, "Thermodynamics of precision in quantum nanomachines", Physical Review E 103 1, 012133 (2021).

[5] Alex Arash Sand Kalaee and Andreas Wacker, "Positivity of entropy production for the three-level maser", Physical Review A 103 1, 012202 (2021).

[6] Benjamin Yadin, Benjamin Morris, and Gerardo Adesso, "Mixing indistinguishable systems leads to a quantum Gibbs paradox", Nature Communications 12 1, 1471 (2021).

[7] G. Francica, F. C. Binder, G. Guarnieri, M. T. Mitchison, J. Goold, and F. Plastina, "Quantum Coherence and Ergotropy", Physical Review Letters 125 18, 180603 (2020).

[8] Sourav Bhattacharjee, Utso Bhattacharya, Wolfgang Niedenzu, Victor Mukherjee, and Amit Dutta, "Quantum magnetometry using two-stroke thermal machines", New Journal of Physics 22 1, 013024 (2020).

[9] D. von Lindenfels, O. Gräb, C. T. Schmiegelow, V. Kaushal, J. Schulz, Mark T. Mitchison, John Goold, F. Schmidt-Kaler, and U. G. Poschinger, "Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel", Physical Review Letters 123 8, 080602 (2019).

[10] S. Alipour, A. T. Rezakhani, A. Chenu, A. del Campo, and T. Ala-Nissila, "Unambiguous Formulation for Heat and Work in Arbitrary Quantum Evolution", arXiv:1912.01939.

[11] Adalberto D. Varizi, Mariana A. Cipolla, Martí Perarnau-Llobet, Raphael C. Drumond, and Gabriel T. Landi, "Contributions from populations and coherences in non-equilibrium entropy production", arXiv:2102.11244.

[12] Marcelo Janovitch and Gabriel T. Landi, "Quantum mean-square predictors of work", arXiv:2104.07132.

The above citations are from Crossref's cited-by service (last updated successfully 2021-04-21 20:27:26) and SAO/NASA ADS (last updated successfully 2021-04-21 20:27:27). The list may be incomplete as not all publishers provide suitable and complete citation data.