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One of the fundamental questions in quan-
tum thermodynamics concerns the decomposi-
tion of energetic changes into heat and work.
Contrary to classical engines, the entropy
change of the piston cannot be neglected in
the quantum domain. As a consequence, dif-
ferent concepts of work arise, depending on
the desired task and the implied capabilities
of the agent using the work generated by the
engine. Each work quantifier—from ergotropy
to non-equilibrium free energy—has well de-
fined operational interpretations. We anal-
yse these work quantifiers for a heat-pumped
three-level maser and derive the respective
engine efficiencies. In the classical limit of
strong maser intensities the engine efficiency
converges towards the Scovil–Schulz-DuBois
maser efficiency, irrespective of the work quan-
tifier.

1 Introduction and motivation
The question of what is quantum in quantum heat
engines (QHEs) exists since the advent of the field
of quantum thermodynamics [1–3]. Naturally, the
answer to this question requires a comparison with
classical heat engines. Basically, a heat engine is a
machine that converts thermal energy into work, ir-
respective whether its constituents are of classical or
quantum nature. Classically, there exists an unam-
biguous notion of “work” and heat engines are com-
monly studied by analysing idealised thermodynamic
cycles (comparative processes), without specifying the
details of the work extraction mechanism [4, 5]. The
underlying assumption for treating the entire energy
exchanged between the engine’s working medium and
the piston as work is that the entropy of the work
extraction device (i.e., the piston) remains constant.
The produced work is further assumed to be imme-
diately transferred to a load such that, mathemat-
ically, heat engines can be described by a periodic,
time-dependent (controlled) Hamiltonian.
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Figure 1: An autonomous quantum heat engine (QHE) uses
the equilibrium free energy difference ∆F between two ther-
mal baths at temperatures Tc and Th, respectively, to au-
tonomously drive a second quantum system into a specific
quantum state. The target system thereby either constitutes
a load of the engine (yellow branch), such that its energy
increase ∆E matters, or plays the role of a piston (green
branch), such that its non-equilibrium free energy increase ∆F
matters. In the latter case the piston’s non-equilibrium free
energy is subsequently used by an agent to perform external
work Wext in a controlled (non-autonomous) process.

The concept of a working medium undergoing a
prescribed thermodynamic engine cycle has been very
successfully applied in the quantum domain too, both
theoretically [2, 3, 6–11] and experimentally [12–16].
Hereby the macroscopic working medium (e.g., an air-
fuel mixture) is replaced by a quantum system, e.g.,
a single spin or a single atom. The work extraction
mechanism, by contrast, is considered to be classical
with a driving field being the analogue of a mechanical
piston. Therefore, the unambiguous notion of work
from classical thermodynamics, namely, the energetic
change of this field (piston), also applies here [2, 3].

An externally prescribed periodic engine cycle is of
course an idealisation. Instead of being externally-
controlled, one may include the piston degrees of
freedom into the dynamics by considering a time-
independent (autonomous) Hamiltonian for the joint
working-medium–piston system. The different strokes
of the underlying thermodynamic cycle are then trig-
gered by, e.g., the piston position [17, 18] rather than
by an external control field. Such self-contained heat
engines typically autonomously amplify the energy of
a prescribed initial state of the piston subsystem [18–
22]; this initial state needs to be provided by an exter-
nal agent. Contrary to driven heat engines the work is
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accumulated in the piston and causes the continuous
amplification (e.g., acceleration) of the piston motion
if the work performed by the engine is not further
unidirectionaly transferred to a load [21, 23, 24]. For
this reason and also due to the piston entropy not
remaining constant any more, the engine no longer
operates in a cyclic fashion. Also, the initial amplifi-
cation of an input state is often analysed in the limit
of short interaction times, permitting a separation
ansatz [19, 20, 22].

Hence, while these engines autonomously convert
heat to work, without the need of an externally-
prescribed cycle, they nevertheless require an external
agent to initialise their respective input states. Being
an external out-of-equilibrium resource [25], the latter
has a fundamental influence on the engine operation—
if it is unfavourably chosen, the thermodynamic ma-
chine may not act as an engine and only heat up the
piston [19, 20]. Such self-contained engines may be
dubbed quantised heat engines to stress that whilst
their constituents may be quantum, their operational
principle is still conceptually of classical origin, e.g.,
based on the concept that externally changing a pa-
rameter requires a different amount of energy depend-
ing on the temperature of the body. In that sense it is
not of conceptual importance whether this parameter
is the volume of a gas or the energetic gap between
the discrete energy levels of a two-level atom. Such
a self-contained heat engine has recently been experi-
mentally realised based on a single spin [26].

The analysis of autonomous quantised heat engines
sparked an ongoing debate on the nature of work in
autonomous quantum setups [19, 20, 22, 24, 27–45].
Although this debate is not yet settled, the concept of
ergotropy [27–29] being a quantum analogue of work
for the considered tasks has gathered strong support
in the quantum thermodynamics community. Loosely
speaking, ergotropy is that part of the energy of a
quantum system that can be extracted in a unitary
(and therefore isentropic) fashion by an agent. Ac-
cording to this view, an engine increases the ergotropy
of the piston mode. The remainder of the transferred
energy is then of thermal nature and heats up the
piston mode [19, 20, 22]. While the entropy associ-
ated to this thermal energy may be considerable for
small quantum systems, in the classical limit it hardly
contributes to the total piston energy such that the
entire energy transfer may be viewed as contributing
to ergotropy, which is also defined for classical sys-
tems [46–48]. This justifies the analysis of this type
of heat engines by means of idealised, prescribed ther-
modynamic cycles once the piston becomes so strongly
populated that its passive (i.e., non-ergotropic) energy
may be neglected. By doing this any entanglement or
correlations between the engine working medium and
the piston are also neglected.

In principle, autonomous engines that mimic ther-
modynamic cycles may either be classical or quantum,

depending on the engine design and its size. One may,
however, also consider a conceptually and physically
very distinct type of autonomous QHEs, namely those
without driven counterpart. These engines are not ob-
tained by quantising a classical piston mode (driving
field) and are thus not described by self-contained ver-
sions of time-dependent Hamiltonians. They may not
amplify an externally-prescribed input state but oper-
ate under steady-state conditions, independent of the
initial condition [25]. Hence, their operation does not
require any external agent. The operational principle
of such heat engines may heavily rely on the presence
of quantised energy levels, quantum correlations or
entanglement between its constituents and may there-
fore not even possess a classical counterpart. A prime
example for such quantum engines are heat-pumped
masers or lasers [1, 49–53]. We may dub such engines
quantum heat engines to distinguish them from the
quantised heat engines introduced above.

Note, however, that there is no universally-accepted
criterion for “quantumness”. Indeed, whether a partic-
ular system is deemed to be “quantum” or not is very
differently assessed depending on the field of research
and application in mind and may, e.g., relate to nega-
tive quasi-probability distributions [54, 55], the pres-
ence of coherence or entanglement [56] or whether a
system cannot be efficiently simulated on a classical
computer [57]. Therefore, the purpose of the above
division of autonomous engines depending on their
“quantumness” is mainly for semantic convenience; in
either case we consider few-body systems that consti-
tute autonomous thermodynamic engines.

As mentioned above, classically, the energy associ-
ated to the entropy change of the piston may be ne-
glected and the entire transferred energy be regarded
to constitute “useful work”. Quantum-mechanically,
however, the situation is more intricate. Owing to
the smallness of the systems involved, the entropy
of the piston is no longer negligible and may signif-
icantly hamper work extraction. At this point, how-
ever, one needs to specify the tasks of the autonomous
QHE: Does the second quantum system (which is cou-
pled to the working medium) constitute a load, from
which no work is subsequently extracted, or a piston,
whose quantum state is later exploited by an external
agent to extract work (Fig. 1)? In the latter case one
must also take this agent’s abilities into account [58].
Consequently, quantum-mechanically it is inevitable
to specify the task of the engine in order to be able to
quantify work [39] and efficiency. We note, however,
that depending on the task of an autonomous QHE
no notion of work may be necessary to assess its per-
formance, e.g., for entanglement generation [59], time
keeping [60] or refrigeration [61].

Here we clarify the operational meaning of dif-
ferent measures of work for autonomous quantum
heat engines and reveal the intimate relation be-
tween ergotropy and non-equilibrium free energy. We
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illustrate the operational meaning of these work
quantifiers and exemplify them by the heat-pumped
maser [49, 50, 52, 53]. Work in quantum mechan-
ics is not universal and a unified notion of work only
emerges in the classical limit of strong maser intensi-
ties, where the concrete measure does not matter any
more. We show that contrary to the aforementioned
case of quantised heat engines with driven counter-
part, in the considered QHEs the physical origin of the
piston entropy may be entirely non-thermal: Rather
than stemming from classical heating of the light field,
it is the undetermined phase of the laser light that
generates the entropy. Notwithstanding, even if in
the classical limit of a large piston population (laser
intensity) the work and efficiency measures reveal a
unified “classical” behaviour, the QHE itself remains
inherently quantum in its operation: The maser does
not have a classical analogue and as such still relies
on quantum features, e.g., entanglement and discrete
energy levels, to convert heat into work.

These conceptual differences make autonomous
quantum heat engines (QHEs) devoid of any driven
counterpart ideally suited for investigating genuine
quantum phenomena in the operation of heat engines.

2 Energetics of the piston mode
The work produced by an autonomous QHE may
be directly “cashed in” by a load to increase its en-
ergy while being driven into some desired quantum
state (yellow branch in Fig. 1). If, however, an agent
envisages to use this state to subsequently perform
work on some external system, the load now adopts
the role of a piston (green branch in Fig. 1). Then
the change in the load state is not the end of the
story and ambiguous definitions of external work arise.
By contrast, the “internal” work performed by the
machine on the load/piston is not measurable and
hence irrelevant. Work, as introduced in classical
thermodynamics, is inherently an agent-based task-
related concept [62, 63]. Indeed, thermodynamic con-
cepts in the quantum regime are also often subjec-
tive and the emergence of more objective notions
requires asymptotic sizes or additional assumptions.
Thus, any operational approach to work will feature
an agent [39, 58, 64–67].

In order to understand how an external agent can
make use of the piston state ρ, we have to further
understand the energetic content of the latter. To
this end we first decompose the energy E = Tr[ρH]
as

E =W + Epas, (1)

where W is the ergotropy of ρ, i.e., the maximum en-
ergy extractable by cyclic unitaries [27–29] (a unitary
applied on a system is called cyclic when the initial
and final system Hamiltonians coincide). The remain-
ing energy Epas = Tr[πH] that is not accessible by

Figure 2: Extractable work from N copies of the piston
state ρ by means of unitary transformations applied by an
agent. Using local unitaries (each acting on a single copy),
the agent can maximally extract the work NW(ρ), where
W(ρ) is the ergotropy of a single copy of ρ. The bound
ergotropy of each piston state is unitarily inaccessible and
thus contributes to the passive energy. By contrast, if the
agent is capable of applying global unitaries that act on all the
copies, the bound ergotropy of every copy becomes unitarily
accessible and thus enlarges the external work |Wext|. At
most, NW(ρ) +NWbound(ρ) can be extracted (in the limit
N →∞); for finite N a part of the bound ergotropy remains
passive energy. Ergotropy is a non-extensive quantity and
therefore the energetic weight of the piston entropy (i.e., the
passive energy) is reduced as an agent increases its control
capabilities on the piston ensemble.

such unitaries is attributed to the passive state π of
ρ, to which it is unitarily related, ρ = UπU†. This
passive state, however, is not necessarily completely
passive. Namely, if π is not a Gibbs state then the
energy of a collection of N copies of π can be fur-
ther reduced by global cyclic unitaries that act on
all the N copies [28]. In other words, contrary to
energy, ergotropy is, in general, a non-extensive quan-
tity,W(ρ⊗N ) ≥ NW(ρ), except if π is a thermal state
(equal sign). We therefore further decompose the en-
ergy (1) as

E =W +Wbound + Eth, (2)

where
Wbound := Epas − Eth (3)

is “quantum-bound ergotropy” and Eth the energy of
the thermal state ρπth with the same entropy as π,
S(ρπth) = S(π) ≡ S(ρ). Since thermal states are the
minimum-energy states for a given entropy [68] it is
guaranteed that Wbound ≥ 0. Hence,

Wtot :=W +Wbound (4)

is the total ergotropy that can be extracted from each
copy of ρ by cyclic unitaries that act on an ensemble
of N → ∞ copies of ρ (Fig. 2). Only in the latter
limit is the passive state of ρ⊗N a (completely passive)
Gibbs state and its energy therefore of purely thermal
nature. We may thus think of the non-thermal part of
the passive energy as bound ergotropy. The energetic
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E(ρ) = Tr[ρH]

W(ρ) Epas(π)

Wbound(π) Eth(ρπ
th)

Figure 3: Visualisation of the decomposition of the energy E
of a quantum state ρ from Eqs. (1)–(4).

hierarchy given by Eqs. (1)–(4) is shown in Fig. 3.
Note that ergotropy extraction, i.e., unitary energy
reduction, is the widely-accepted notion of work in
driven quantum heat engines [2, 3].

Equations (2) and (4) carry the following mean-
ing: During the engine operation the piston energy
changes by

∆E = ∆Wtot + ∆Eth. (5)

The actual amount of work that an external agent can
readily unitarily extract from the imparted ergotropy,
however, strongly depends on this agent’s capabilities.
For example, if the agent only has access to a single
copy of ρ, then the bound ergotropy (3) is perceived
as passive energy. This energy is then an analogue
of “heat” since it is (i) lost for direct (unitary) work
extraction and (ii) contributes to the piston entropy.
By contrast, if the agent has access to many copies of
ρ, the bound ergotropy is “zero-entropy energy” and
becomes unitarily accessible. The entropy NS(ρ) of
N copies of the piston state then corresponds to ther-
mal energy and thus has a lower energetic weight than
the entropy S of a single copy (or N copies with only
local unitaries), where it corresponds to the sum of
thermal energy and bound ergotropy. In other words,
full knowledge of the state ρ and full control on the
piston is required to allow an agent to extract the en-
tire ergotropy; knowing ρ but lacking control or hav-
ing full control but lacking knowledge on ρ always in-
creases the passive energy perceived by the agent. In
principle, the required level of control for extracting
the entire bound ergotropy may be arbitrary complex
and, e.g., involve several entangling operations. As a
consequence, it may be formidably hard to unitarily
access this energy in practical scenarios, except for
special cases.

Ergotropy is the readily available work, similar to
a work reservoir (battery). Instead of applying cyclic
unitaries the agent may, however, also generate work
in a subsequent external thermodynamic process that
involves a heat bath at temperature T (which may
be one of the two available temperatures Tc and
Th). Namely, the agent may use the piston’s non-
equilibrium free energy w.r.t. T , defined as [69–71]

FT (ρ) := E(ρ)− TS(ρ). (6)

FT (ρ) := E(ρ)− TS(ρ)

W(ρ) FT (π)

Wbound(π) FT (ρπth)

Figure 4: Visualisation of the decomposition of the non-
equilibrium free energy F of a quantum state ρ from Eqs. (6)–
(8).

The non-equilibrium free energy naturally relates to
the concepts of ergotropy and passive energy,

FT (ρ) =W(ρ) + Epas(π)− TS(ρ) =W(ρ) + FT (π),
(7)

where the second equal sign follows from S(ρ) ≡ S(π).
Namely, the non-equilibrium free energy of the state ρ
equals this state’s ergotropy plus the non-equilibrium
free energy of the passive state π. Using the notion of
bound ergotropy introduced in Eq. (3), Eq. (7) may
further be decomposed as

FT (ρ) =W(ρ) +Wbound(π) + FT (ρπth). (8)

The free-energy hierarchy given by Eqs. (6)–(8) is
shown in Fig. 4.

Equations (7) and (8) close the bridge between the
concepts of ergotropy and free energy: The ergotropy
W(ρ) is the “battery-like” part of the free energy that
can readily be extracted in the form of work. By con-
trast, the ergotropy of the passive state π is bound
and requires global cyclic unitaries acting on multiple
copies of π to be “unlocked”. The remaining entropic
part of the free energy is then of thermal nature. If,
however, only a single copy of ρ is available, then its
free energy consists of ergotropy and the free energy of
the passive state. The latter may then be transformed
into work in a non-cyclic thermodynamic process in-
volving a bath at temperature T and as such does not
constitute a work reservoir (battery).

Equation (8) hence suggests the following opera-
tional interpretation for most favourably using the
non-equilibrium free energy: First, a maximum of en-
ergy should be extracted in a unitary way; the con-
crete amount will depend depend on the available con-
trol and the number of copies of ρ. The free energy
of the remaining passive state, which in the ideal case
is a thermal state, can then be further used in a non-
unitary thermodynamic process.

3 Illustrative example: The three-level
maser and its operation modes
To illustrate the foregoing general considerations we
now consider the well-known Scovil–Schulz-DuBois
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(a) (b)

Figure 5: Heat-pumped three-level maser. (a) The hot ther-
mal bath at temperature Th couples the states |1〉 and |3〉
at frequency ωh := ω3 − ω1 whereas the cold bath at tem-
perature Tc couples |3〉 and |2〉 at frequency ωc := ω3 − ω2.
The lasing transition |1〉 ↔ |2〉 of frequency ωf := ω2 − ω1
is resonantly coupled to a single cavity-field mode (harmonic
oscillator). (b) Q-function of the cavity mode below (left)
and above (right) the maser threshold, respectively. See
Appendix A for details on the numerical simulations.

(SSD) heat-pumped three-level maser [1] (Fig. 5).
We stress, however, that the conclusions also ap-
ply to other autonomous setups such as (spatial)
temperature-gradient lasers [51], optomechanically-
coupled oscillators [25] or machines wherein two
qubits are coupled to the respective baths and a third
one mediates the interaction with a harmonic piston
mode. Steady-state work production without satura-
tion effects requires an infinitely-dimensional piston or
load, e.g., a harmonic oscillator, a free particle in the
gravitational field, or a rotating flywheel. For finite-
dimensional target systems the engine operation is al-
ways restricted to be of transient nature.

The dynamics of the joint atom–cavity system is
modelled by a “local” Lindblad master equation whose
consistency with the second law of thermodynamics
has been verified in numerical simulations (see Ap-
pendix A). Depending on the involved frequencies and
temperatures, this maser exhibits different operation
modes (Fig. 5b) [72]:

(i) For ωc/Tc < ωh/Th the atom–cavity system
reaches an equilibrium state devoid of any remain-
ing energy currents. Consequently, any refrigerator
or engine operation can only be of transient nature.
During the evolution the reduced state of the cav-
ity field becomes thermal with effective temperature
Teff = ωf/(ωh/Th − ωc/Tc) and energy Eeff (central
blob in the left panel of Fig. 5b). The concrete dynam-
ics of course depends on the involved time scales but
as a general rule of thumb an initial state with energy
larger than Eeff may power transient refrigeration of
the cold bath from its free energy. By contrast, for
a lower initial energy the field’s free energy w.r.t. the
highest available bath temperature, i.e., Th, starts in-
creasing at some point during the transient dynamics.
This indicates that work was performed, even though
the cavity state is thermal and does not contain any
(available or bound) ergotropy.

(ii) At the masing threshold ωc/Tc = ωh/Th the
thermal occupations ni = {exp[~ωi/(kBTi)] − 1}−1

1.3
1.4
1.5
1.6

0.6 0.8 1.0 1.2 1.4 1.6
Ef/Eh

0.00

0.02

0.04
pure states
thermal states

(F
h f
−
F

h)
/|
F

h|

Figure 6: Non-equilibrium free energy Fh
f := FTh

f [Eq. (6)]
of the cavity field (piston) w.r.t. Th. Thermal states with
Tc ≤ T ≤ Th are “free” resources, i.e., directly obtainable
from the available heat baths without the need to build
an engine. The thermal state of the cavity field at Th is
then the most energetic (energy Eh) free state and Fh its
equilibrium free energy. Under steady-state operation the
engine performs work on the field if the field’s energy and free
energy relative to this state increase [25]. The states above
the lower blue (thermal) line have a reduced entropy and thus
contain ergotropy; states on the upper orange line have zero
entropy and thus exclusively contain ergotropy. Since thermal
states have maximum entropy for a given energy, any state of
the cavity field for a given energy lies between the two (blue
and orange) curves. Parameters: kBTh = 10~ωf .

(i ∈ {c, h}) of the two thermal baths at the two atomic
transitions frequencies ωc and ωh coincide. The atom
then reaches steady state while the cavity field con-
tinuously heats up, Teff → ∞. Consequently, no er-
gotropy is accumulated in the field. Hence, contrary
to below threshold the field does not reach any steady
state and the machine acts as an “eternal” transient
engine with Ḟh

f > 0 and Ẇf = 0, Ḟh
f := ḞTh

f be-
ing the change in the field’s non-equilibrium free en-
ergy (6) w.r.t. Th. Since the cavity field remains ther-
mal, its non-equilibrium free energy follows the lower
blue curve in Fig. 6.

(iii) Above threshold, ωc/Tc > ωh/Th, the engine
continuously performs work, Ḟh

f > 0 and Ẇf > 0,
but not all of the energy accumulated in the field
contributes to ergotropy since also the field entropy
increases. This regime of the atom attaining steady
state and the field intensity growing corresponds to
a steady-state operation of the engine (as opposed to
the transient engine below threshold). During the en-
gine operation the field becomes a Poissonian state
(phase-averaged coherent state) of continuously in-
creasing intensity, Ėf > 0, whose photon bunching
parameter g(2)(0) :=

〈
a†a†aa

〉
/
〈
a†a
〉2 converges to-

wards 1 (confirmed in numerical simulations, see Ap-
pendix A), thus revealing the Poissonian statistics [54].
Its Q-function has the shape of an annulus, as ex-
pected for a maser/laser [54, 73] (Fig. 5b). Hence,
the field’s passive state is not a thermal state and
contains bound ergotropy. Note that contrary to the
light amplifiers considered in Refs. [20, 22], the steady-
state maser operates as a light generator. Here the in-
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creasing light field entropy does not stem from heating
(which would cause photon bunching) but solely from
the undetermined phase of the laser light. The op-
eration above threshold may be understood as “cash-
ing in” the work potential (population inversion) of
the atom. Indeed, the atomic population inversion
in steady state is much smaller than without coupling
the atom to the cavity [50]. Finally, we note that Pois-
sonian states of the cavity field correspond to points
in between the two extreme curves (thermal and pure
states) in Fig. 6.

We note that autonomous QHEs do not operate in
cycles, hence there would be no a-priori need for a
cold bath. However, two thermal baths are neverthe-
less required to generate a continuous steady-state op-
eration of the engine as the operation of a single-bath
engine would always be of transient nature.

4 Thermodynamic tasks and efficiency
of autonomous QHEs
In the following we consider the maser as an au-
tonomous QHE under steady-state operation (i.e.,
above threshold). We recall that in this regime the
atomic populations do not change whereas the mean
number of photons in the Poissonian light field contin-
uously increases. One may then consider the following
scenarios regarding the role of the light field:

• Light field as load of the engine: The purpose of
the QHE is to produce a high-intensity light field
with Poissonian statistics, i.e., laser light.

• Light field as battery: The purpose of the QHE
is to increase the light field’s ergotropy.

• Light field as part of an N -partite battery: The
purpose of the QHE is to increase the light field’s
total ergotropy.

• Light field as a free-energy resource beyond the
most-energetic available thermal bath: The pur-
pose of the QHE is to increase the light field’s
non-equilibrium free energy w.r.t. Th.

The above scenarios may, in one way or another,
differ from the concept of (external) work in classi-
cal engine cycles but they all have in common that
their respective task pertains to creating a state of
the light field that (i) cannot be generated by directly
coupling the cavity field to the two thermal baths and
(ii) constitutes an additional resource, beyond the two
thermal baths, that enables to later perform a task
that would be impossible to perform solely with the
initial resources. We believe that these two proper-
ties constitute an operationally-meaningful analogue
to the classical concept of “work” in fully-autonomous
QHEs. Namely, that due to the engine action “more”
can be done with the resulting piston state than with

its initial state, which was assumed to be “free” in
the sense of thermodynamic resource theories, i.e., a
thermal state at one of the two bath temperatures.
Phrased differently, the engine allows to generate an
out-of-equilibrium state of the cavity field that would
be inaccessible solely given the cold and hot thermal
baths.

Depending on the chosen task, the efficiency of the
engine has to be defined accordingly. This ambigu-
ity may perhaps be unsatisfying but we should keep
in mind that the term “work” itself carries an inher-
ent operational definition: Work is the “useful” en-
ergy transfer to the piston which an agent can after-
wards use to perform a task and the remainder is
“heat” in the sense of wasted energy. Consider, for
example, an agent that is limited to a certain set
of unitaries [38] which is incompatible with the pis-
ton state generated by the engine—the engine would
only produce waste energy (“heat”) that cannot be
exploited by this agent. A prime example is the Pois-
sonian maser state which cannot be fully exploited
with Gaussian operations. An operational definition
of work extraction in the sense of classical thermody-
namics will always involve some external agent that
controls the system [39, 58, 63–67]. Therefore the pis-
ton ergotropy is only an upper bound on the actual
unitarily-extractable energy. Any restriction of the
agent increases the piston’s passive energy, i.e., the
energetic weight of its entropy.

We first consider an autonomous QHE whose load
is the laser field (yellow path in Fig. 1). There is
no external agent that further strives to extract work
from the latter. Hence, the quantity of interest is the
continuously increasing energy (intensity) of the light
field, Ėf > 0, after the atom has reached a steady
state. The “natural” efficiency for this task is the en-
ergetic efficiency

ηEss := Ėf
Jh
≤ 1− Tc

Th
+ TcṠaf

Jh
, (9)

where Jh > 0 is the heat current from the hot bath to
the atom and Ṡaf > 0 the change in the von-Neumann
entropy of the joint atom–field system. Owing to the
increase of the latter the energetic efficiency (9) is
not bounded by the Carnot efficiency [52]. However,
Eq. (9) is not the thermodynamic efficiency of heat-to-
work conversion and as such cannot be directly com-
pared to the Carnot bound [74] as it pertains to dif-
ferent energetic quantities.

By contrast, if the task of the engine is to
autonomously charge a battery from which work
is extracted later on in an ideal controlled (non-
autonomous) process (green branch in Fig. 1) then
not only the intensity of the light matters, but also
its quantum statistics and entropy. The correspond-
ing efficiency must then refer to the light field’s er-
gotropy. Under steady-state operation of the engine
above threshold the atom already relaxed to a sta-
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tionary state while the field is in a mixed Poisso-
nian state with a monotonically-increasing intensity
and entropy. To fulfill the sub-additivity of entropy,
Saf ≤ Sa +Sf , at any time in this steady-state regime
where Sa = const. and Ṡf > 0, the total (atom–field)
entropy cannot monotonically increase faster than the
field entropy, Ṡaf ≤ Ṡf , as eventually it would surpass
the sum of the atomic and field partial entropies. For-
mally, Ṡaf could be instantaneously greater than Ṡf .
However, a situation where the total atom–field en-
tropy toggles between Ṡaf ≤ Ṡf and Ṡaf > Ṡf would be
physically incompatible with an atomic steady state.
Identifying Ėpas,f − TcṠf as the change in the non-
equilibrium free energy of the passive field state w.r.t.
the cold-bath temperature Tc, we find the ergotropic
efficiency

ηWss := Ẇf
Jh
≤ 1− Tc

Th
− Ḟ

c
f (π)
Jh

≤ ηCarnot. (10)

Since for the steady-state operation of the engine
Ḟh

f (π) ≥ 0⇒ Ḟc
f (π) ≥ 0 it follows that the ergotropic

efficiency is always limited by the Carnot bound. The
piston ergotropy is the closest counterpart to the con-
cept from classical thermodynamics that the work per-
formed by an engine can readily be used, i.e., without
any further thermodynamic process.

The ergotropy in Eq. (10) pertains to local unitaries
applied on the cavity field. If the passive state of the
latter is non-thermal, however, global operations on
more copies of the state (e.g., stemming from multiple
engines operated in parallel) can “unlock” its bound
ergotropy [Eq. (3)]. The corresponding efficiency then
reads

ηWtot
ss := Ẇtot,f

Jh
≤ 1− Tc

Th
− Ḟ

c
f (ρπth)
Jh

≤ ηCarnot, (11)

where we have identified Ḟc
f (ρπth) = Ėth − TcṠf ≥ 0.

Finally, if the piston mode is understood to be a
free-energy resource beyond Th then the adequate ef-
ficiency is

ηFss := Ḟ
h
f
Jh
≤ 1− Tc

Th
− (Th − Tc)Ṡf(π)

Jh
≤ ηCarnot. (12)

Consequently, if an external agent is involved the
efficiency does not surpass the Carnot bound. We
have summarised the thermodynamic tasks and the
associated efficiencies in Table 1.

Note that the energetic efficiency (9) equals the
SSD maser efficiency

ηEss = 1− ωc
ωh
≡ ηmaser (13)

and that in the classical limit of a highly-populated
piston mode both the ergotropic and free-energy ef-
ficiencies (10) and (12) converge towards the latter,

quantity of interest efficiency light field is

intensity (energy) ηE
ss = Ėf

Jh
load of the engine

unitarily extractable
energy ηW

ss = Ẇf
Jh

battery

unitarily extractable
energy from many

copies
ηWtot

ss = Ẇf + Ẇf,bound
Jh

part of an N -partite
battery (N → ∞)

non-equilibrium free
energy ηss = Ḟf

Jh

non-equilibrium
free-energy resource
beyond the available

thermal baths

Table 1: Summary of the thermodynamic tasks and the
associated efficiencies of the heat-pumped maser.

ηWss = ηmaser
Ẇf,ss

Ėf,ss
≈ ηmaser

(
1−

√
2~ωf
πEf

)
(14a)

ηFss = ηmaser
Ḟf,ss

Ėf,ss
≈ ηmaser

(
1− kBTh

2Ef

)
. (14b)

Here we have used the Gaussian approximation of the
Poissonian distribution (see Appendix A). Hence, in
the classical limit the energy associated to the field en-
tropy becomes negligible compared to the total field
energy. Consequently, one regains the unambiguous
notion of work performed by the engine from classi-
cal thermodynamics, namely, the entire energy trans-
ferred to the piston. This limit, however, does not
imply that the operational principle of the maser heat
engine becomes classical. Indeed, the maser operation
requires discrete energy levels.

The above limit of a classical piston is consistent
with Mølmer’s argument [75] that for large photon
numbers the Poissonian distribution becomes so nar-
row that it may effectively be replaced by a point
measure, i.e., a Fock state.

Finally, we note that Eq. (9) is a special case
(steady-state operation, Ėaf = Ėf) of the general re-
sult

Ḟc
af
Jh
≤ ηCarnot, (15)

which follows from combining the first and second
laws of thermodynamics for the combined atom–field
system. Inequality (15) is the equivalent of the fa-
mous Carnot formula, which concerns cyclic heat en-
gines, for autonomous engines. Here, work and heat
are replaced by the change in the atom–field non-
equilibrium free energy w.r.t. the cold bath, Ḟc

af , and
the heat current Jh, respectively.
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5 Conclusions

Heat engines drive the piston mode into an out-of-
equilibrium state beyond the available thermal re-
sources (hot and cold baths). Classically, the entropy
of the piston is assumed to remain constant, such that
all the energy transferred from the engine to the pis-
ton is considered to be work. In the quantum domain,
however, the entropy change of the piston is no longer
negligible and manifests itself by a considerable frac-
tion of the total energy being of passive nature. Hence,
different operational notions of work arise, depending
on the task of the engine.

We have studied the heat-pumped three-level maser
as a simple and illustrative example of an autonomous
quantum heat engine (QHE). If the task of this
QHE is to drive the light field into a Poissonian
state, only the state’s energy matters and the ener-
getic efficiency (9) is the adequate performance mea-
sure. If, however, the change of the piston state
is not the end of the story but an external agent
strives to extract work out of the resulting piston
state, then the exact task specification and agent ca-
pabilities matter. The agent may either unitarily re-
duce the piston energy, thereby making use of the
state’s ergotropy, or use its non-equilibrium free en-
ergy in a non-unitary process; both leading to differ-
ent expressions [Eqs. (10) and (12)] for the engine
efficiency. Here we have reconciled the concepts of
(non-equilibrium) free energy—frequently used in sta-
tistical mechanics—and ergotropy—a central concept
in quantum thermodynamics—in Eqs. (7) and (8).

As revealed by its Poissonian statistics, the entropy
of the field generated by the heat-pumped three-level
maser solely stems from the random phase [75–90] and
not from heating. Super-Poissonian photon statistics
(heating manifested by photon bunching) only occur
if the cavity field mode itself is also directly coupled
to a thermal bath (cavity decay due to leaky mirrors),
which causes this mode to relax to a real steady state
with a fixed photon number [91]. The engine then
needs to continuously perform work to maintain this
out-of-equilibrium state of the light field [25].

In the limit of large piston energies (compared to
~ωf and kBTh) the ergotropic and free-energy efficien-
cies [Eqs. (10) and (12)] converge towards the Scovil–
Schulz-DuBois (SSD) maser efficiency (13). This may
be regarded as the classical limit in which all the
energy transferred from the engine to the piston is
extractable work, owing to the decreasing relative
contribution of passive energy to the total energy.
This limit should, however, not be confused with the
maser QHE becoming classical—its operation inher-
ently requires discrete energy levels, which is a distinct
quantum feature. This classical limit should also be
distinguished from the short-time amplifiers consid-
ered in Refs. [20, 22] that for large field intensities
become classical in the sense that they may be de-

scribed by controlled, time-dependent external fields
even though their working medium remains a quan-
tum object. The steady-state maser considered here,
by contrast, is a field generator rather than a field
amplifier and hence does not possess a driven coun-
terpart.

While in this work we focused on the quantum state
of the piston (field), our results can straightforwardly
be extended to the joint atom–field system.
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A Three-level maser
The time evolution of the three-level maser in Fig. 5a
is governed by the master equation

ρ̇ = 1
i~

[H, ρ] + Lhρ+ Lcρ (A1)

for the joint atom–field density operator ρ [50]. Its
coherent part is determined by the Hamiltonian H =
Hfree +HJC, which consists of the free part (dropping
tensor products with identities on subspaces for nota-
tional convenience)

Hfree =
3∑
i=1

~ωi |i〉〈i|+ ~ωfa
†a (A2)

and the Jaynes–Cummings interaction [54]

HJC = ~g
(
σ−a

† + aσ+
)

(A3)

between the atomic transition |1〉 ↔ |2〉 and the
cavity field; here we have defined σ− := |1〉〈2| and
σ+ := |2〉〈1|. The dissipative part of the master equa-
tion (A1) consists of the Liouvillians

Lhρ = γh(nh + 1)D
[
|1〉〈3|

]
+ γhnhD

[
|3〉〈1|

]
(A4)

and

Lcρ = γc(nc + 1)D
[
|2〉〈3|

]
+ γcncD

[
|3〉〈2|

]
(A5)

that describe the coupling of the transitions |1〉 ↔ |3〉
(|2〉 ↔ |3〉) to the hot (cold) thermal bath, respec-
tively, with the dissipator D[A] := 2AρA† − A†Aρ −
ρA†A [92]. The thermal populations of the (bosonic)
baths are ni = {exp[~ωi/(kBTi)] − 1}−1 (i ∈ {c,h}).
Note that we do not consider cavity decay since this
would involve an additional thermal bath that is di-
rectly coupled to the cavity mode; the cavity field
would then relax to a steady state with a fixed num-
ber of photons.
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We have numerically integrated the master equa-
tion (A1) for a large set of different atomic and field
parameters. Whereas below the maser threshold the
field relaxes to a thermal state, above threshold the
field excitation increases while the photon bunching
parameter approaches unity, thus revealing the Pois-
sonian statistics. For Fig. 5b we have integrated the
master equation (A1) until t = 100γ−1

h with the follow-
ing parameters: γc = γh, ω1 = 0, ω2 = ωf = 30γh, g =
5γh, kBTc = 20~γh and kBTh = 100~γh. The maser
threshold being ω3 = 37.5γh we chose ω3 = 34γh and
ω3 = 150γh to be below and above threshold, respec-
tively. Starting from the atom in the ground state and
an empty cavity, at t = 100γ−1

h the respective pho-
ton numbers are

〈
a†a
〉
≈ 5.7 (below threshold) and〈

a†a
〉
≈ 11.7 (above threshold). All numerical simu-

lations were implemented in Julia using the Quantu-
mOptics.jl framework [93].

Note that the Liouvillians (A4) and (A5) are of
so-called local nature. Namely, they have been de-
rived using local operators, i.e., operators that solely
act on one of the two coupled subsystems (atom and
cavity), thereby neglecting the atom–field interaction
term (A3). Here, these local operators describe the
atomic transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉, respec-
tively. While this is a very common strategy in quan-
tum optics [54], the appropriateness and thermody-
namic consistency of such local master equations has
been debated within the quantum thermodynamics
community, see, e.g., Refs. [94–96]. A conclusion of
this debate seems to be that both, the local and the
global master equation—the latter being derived from
the eigenstates of the interacting system and thus con-
taining global jump operators in the Liouvillian—are
adequate in their respective region of validity. We
have verified that the second law of thermodynamics
(non-negative entropy production) is always fulfilled
in our numerical simulations.

For the master equation (A1) the steady-state heat
current Jh from the hot bath to the atom [2, 3] that
appears in the efficiencies (9)–(12) reads

Jh,ss := Tr [HLhρss]
= ~ωh

[
2γhnhP

ss
1 − 2γh(nh + 1)P ss

3
]
, (A6)

where Pi := 〈|i〉〈i|〉. To evaluate this expression we
consider the Ehrenfest equations

d
dt
〈
a†a
〉

= −2g Im 〈σ+a〉 (A7a)

d
dtP2 = 2g Im 〈σ+a〉+ 2γc(nc + 1)P3 − 2γcncP2

(A7b)
d
dtP3 = −(2γh(nh + 1) + 2γc(nc + 1) + 2γhnh)P3

− 2(γhnh − γcnc)P2 + 2γhnh. (A7c)

Under steady-state operation of the engine the atomic
populations reached their stationary values, d

dtP
ss
i =

20 30 40 50 60 70 80 90 100
n

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Poissonian distribution
Gaussian distribution
simulation

0 200 400
γht

0.0

0.5

1.0

g
(2

) (
0)

Figure A1: Photon number distribution above threshold (blue
bars), Poissonian distribution (A14) with α2 :=

〈
a†a
〉
≈

46.8 (orange dots) and its Gaussian approximation (A15)
(green curve). Inset: Photon bunching parameter. Same
parameters as in Fig. 5b (see text) except that here we
have integrated until t = 400γ−1

h to increase the number of
intracavity photons compared to Fig. 5b.

0, whilst the photon number in the cavity keeps in-
creasing. Adding Eqs. (A7b) and (A7c) when the
atom reached steady state and using the normalisa-
tion

∑3
i=1 Pi = 1 yields

2g Im 〈σ+a〉ss +2γhnhP
ss
1 −2γh(nh +1)P ss

3 = 0, (A8)

which, using Eqs. (A6) and (A7a), may be recast in
the form

Ėf,ss = Jh,ss
ωf
ωh
≡ Jh,ssηmaser, (A9)

where
ηmaser := ωf

ωh
≡ 1− ωc

ωh
(A10)

is the SSD maser efficiency [1] and

Ėf,ss = ~ωf
d
dt
〈
a†a
〉

ss . (A11)

Equation (A9) directly yields the energetic effi-
ciency (13), which is the SSD maser efficiency.

As confirmed numerically (see Fig. A1), above
threshold the reduced intracavity state ρf := Tra ρ
converges towards the Poissonian state

ρα =
∞∑
n=0

α2n

n! e
−α2 |n〉〈n| , (A12a)

which may equally be decomposed as [85, 88, 89]

ρα = 1
2π

∫ 2π

0

∣∣αeiϕ〉〈αeiϕ∣∣dϕ, (A12b)

which may be interpreted as a phase-averaged coher-
ent state. Here we have defined the continuously-
growing amplitude

α(t) :=
√
〈a†a〉 (t) > 0. (A13)
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This amplitude should not be confused with a mean
field since 〈a〉 = 0. Indeed, the Q-function [54]
of the state (A12) is a rotationally-symmetric annu-
lus devoid of any phase information (Fig. 5b). The
state (A12) obeys Poissonian statistics with photon
bunching parameter g(2)(0) = 1. Had we also in-
cluded cavity decay, i.e., the coupling of the cavity-
field mode to the external electromagnetic vacuum,
the field would reach a real steady state with super-
Poissonian statistics and a fixed photon number [91].

We now strive to find analytic expressions for
the passive energy and entropy of the laser field
state (A12). To this end we approximate the discrete
Poissonian distribution

p(n) = α2n

n! e
−α2

(A14)

that occurs in the state (A12a) by the continuous
Gaussian distribution

P (n) = 1√
2πα2

exp
(
−
[
n− α2]2

2α2

)
(A15)

whose expectation value and variance are equal
and match their Poissonian counterparts, 〈n〉P =
VarP (n) = 〈n〉p = Varp(n) = α2. This approxima-
tion follows from the central limit theorem and works
well for α2 & 30 (see Fig. A1) [97]. The energy of this
state is Eα = ~ωfα

2 and its passive energy may be
computed as

Eα,pas =
∫ ∞

0
~ωf (4n− 1) 1√

2πα2
exp

(
− n2

2α2

)
= ~ωf

(
2
√

2
π
α− 1

2

)
. (A16)

The entropy of the Poissonian state in the Gaussian
approximation (A15) is

S = kB

(
1
2 + ln

√
2π + lnα

)
, (A17)

in accordance with Ref. [98]. The non-equilibrium free
energy (6) of the Poissonian state (A12) then reads

F(ρα) = ~ωfα
2 − kBT

(
1
2 + ln

√
2π + lnα

)
. (A18)

From Eqs. (A11), (A16) and (A18) then follows

Ẇf,ss = Ėf,ss − 2
√

2
π
~ωf

d
dt

√
〈a†a〉ss

= Ėf,ss

(
1−

√
2~ωf
πEf,ss

)
(A19)

and

Ḟf,ss = Ėf,ss −
kBTh

2

d
dt
〈
a†a
〉

ss
〈a†a〉ss

= Ėf,ss

(
1− kBTh

2Ef,ss

)
. (A20)

Combining these results with Eq. (A9) then yields the
ergotropic and free-energy efficiencies (10) and (12).
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