Magic state distillation with low space overhead and optimal asymptotic input count

Jeongwan Haah1, Matthew B. Hastings2,1, D. Poulin3, and D. Wecker1

1Quantum Architectures and Computation, Microsoft Research, Redmond, WA 98052, USA
2Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA
3Département de Physique & Institut Quantique, Université de Sherbrooke, Quebec, Canada

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We present an infinite family of protocols to distill magic states for $T$-gates that has a low space overhead and uses an asymptotic number of input magic states to achieve a given target error that is conjectured to be optimal. The space overhead, defined as the ratio between the physical qubits to the number of output magic states, is asymptotically constant, while both the number of input magic states used per output state and the $T$-gate depth of the circuit scale linearly in the logarithm of the target error $\delta$ (up to $\log \log 1/\delta$). Unlike other distillation protocols, this protocol achieves this performance without concatenation and the input magic states are injected at various steps in the circuit rather than all at the start of the circuit. The protocol can be modified to distill magic states for other gates at the third level of the Clifford hierarchy, with the same asymptotic performance. The protocol relies on the construction of weakly self-dual CSS codes with many logical qubits and large distance, allowing us to implement control-SWAPs on multiple qubits. We call this code the "inner code". The control-SWAPs are then used to measure properties of the magic state and detect errors, using another code that we call the "outer code". Alternatively, we use weakly-self dual CSS codes which implement controlled Hadamards for the inner code, reducing circuit depth. We present several specific small examples of this protocol.

► BibTeX data

► References

[1] P. W. Shor, Fault-tolerant quantum computation, in Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on (1996) pp. 56–65, quant-ph/​9605011.
https:/​/​doi.org/​10.1109/​SFCS.1996.548464
arXiv:quant-ph/9605011

[2] D. Aharonov and M. Ben-Or, Fault tolerant quantum computation with constant error, SIAM J. Comput. 38, 1207–1282 (2008), quant-ph/​9611025v2.
https:/​/​doi.org/​10.1137/​S0097539799359385
arXiv:quant-ph/9611025v2

[3] E. Knill, R. Laflamme, and W. Zurek, Threshold accuracy for quantum computation, (1996), quant-ph/​9610011.
arXiv:quant-ph/9610011

[4] D. Gottesman, A class of quantum error-correcting codes saturating the quantum hamming bound, Phys. Rev. A 54, 1862 (1996), quant-ph/​9604038.
https:/​/​doi.org/​10.1103/​PhysRevA.54.1862
arXiv:quant-ph/9604038

[5] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, Quantum error correction and orthogonal geometry, Phys. Rev. Lett. 78, 405–408 (1997), quant-ph/​9605005.
https:/​/​doi.org/​10.1103/​PhysRevLett.78.405
arXiv:quant-ph/9605005

[6] N. C. Jones, R. V. Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd, and Y. Yamamoto, Layered architecture for quantum computing, Physical Review X 2, 031007 (2012), 1010.5022.
https:/​/​doi.org/​10.1103/​physrevx.2.031007
arXiv:1010.5022

[7] J. O'Gorman and E. T. Campbell, Quantum computation with realistic magic state factories, 1605.07197v2.
arXiv:1605.07197v2

[8] E. Knill, Fault-tolerant postselected quantum computation: Schemes, (2004a), quant-ph/​0402171v1.
arXiv:quant-ph/0402171v1

[9] E. Knill, Fault-tolerant postselected quantum computation: Threshold analysis, (2004b), quant-ph/​0404104v1.
arXiv:quant-ph/0404104v1

[10] S. Bravyi and A. Kitaev, Universal quantum computation with ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316 (2005), quant-ph/​0403025.
https:/​/​doi.org/​10.1103/​PhysRevA.71.022316
arXiv:quant-ph/0403025

[11] A. M. Meier, B. Eastin, and E. Knill, Magic-state distillation with the four-qubit code, Quant. Inf. Comp. 13, 195 (2013), 1204.4221.
arXiv:1204.4221
http:/​/​www.rintonpress.com/​xxqic13/​qic-13-34/​0195-0209.pdf

[12] S. Bravyi and J. Haah, Magic state distillation with low overhead, Phys. Rev. A 86, 052329 (2012), 1209.2426.
https:/​/​doi.org/​10.1103/​PhysRevA.86.052329
arXiv:1209.2426

[13] C. Jones, Multilevel distillation of magic states for quantum computing, Phys. Rev. A 87, 042305 (2013a), 1210.3388v2.
https:/​/​doi.org/​10.1103/​PhysRevA.87.042305
arXiv:1210.3388v2

[14] G. Duclos-Cianci and D. Poulin, Reducing the quantum computing overhead with complex gate distillation, Phys. Rev. A 91, 042315 (2015), 1403.5280v1.
https:/​/​doi.org/​10.1103/​PhysRevA.91.042315
arXiv:1403.5280v1

[15] I. L. Chuang and D. Gottesman, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402, 390–393 (1999).
https:/​/​doi.org/​10.1038/​46503

[16] A. J. Landahl and C. Cesare, Complex instruction set computing architecture for performing accurate quantum $Z$ rotations with less magic, (2013), 1302.3240.
arXiv:1302.3240

[17] A. Paetznick and B. W. Reichardt, Universal fault-tolerant quantum computation with only transversal gates and error correction, Phys. Rev. Lett. 111, 090505 (2013), 1304.3709.
https:/​/​doi.org/​10.1103/​PhysRevLett.111.090505
arXiv:1304.3709

[18] T. Jochym-O'Connor and R. Laflamme, Using concatenated quantum codes for universal fault-tolerant quantum gates, Phys. Rev. Lett. 112, 010505 (2014), 1309.3310.
https:/​/​doi.org/​10.1103/​PhysRevLett.112.010505
arXiv:1309.3310

[19] J. T. Anderson, G. Duclos-Cianci, and D. Poulin, Fault-tolerant conversion between the steane and reed-muller quantum codes, Phys. Rev. Lett. 113, 080501 (2014), 1403.2734.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.080501
arXiv:1403.2734

[20] H. Bombin, Gauge color codes: Optimal transversal gates and gauge fixing in topological stabilizer codes, New J.Phys. 17, 083002 (2015), 1311.0879v6.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​8/​083002
arXiv:1311.0879v6

[21] S. Bravyi and A. Cross, Doubled color codes, 1509.03239v1.
arXiv:1509.03239v1

[22] T. Jochym-O'Connor and S. D. Bartlett, Stacked codes: Universal fault-tolerant quantum computation in a two-dimensional layout, Phys. Rev. A 93, 022323 (2016), 1509.04255.
https:/​/​doi.org/​10.1103/​PhysRevA.93.022323
arXiv:1509.04255

[23] C. Jones, P. Brooks, and J. Harrington, Gauge color codes in two dimensions, Phys. Rev. A 93, 052332 (2016), 1512.04193.
https:/​/​doi.org/​10.1103/​PhysRevA.93.052332
arXiv:1512.04193

[24] H. Bombin, Dimensional jump in quantum error correction, New Journal of Physics 18, 043038 (2016), 1412.5079v3.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​4/​043038
arXiv:1412.5079v3

[25] T. J. Yoder, R. Takagi, and I. L. Chuang, Universal fault-tolerant gates on concatenated stabilizer codes, Physical Review X 6, 031039 (2016), 1603.03948.
https:/​/​doi.org/​10.1103/​physrevx.6.031039
arXiv:1603.03948

[26] B. Eastin and E. Knill, Restrictions on transversal encoded quantum gate sets, Phys. Rev. Lett. 102, 110502 (2009), 0811.4262.
https:/​/​doi.org/​10.1103/​PhysRevLett.102.110502
arXiv:0811.4262

[27] S. Bravyi and R. König, Classification of topologically protected gates for local stabilizer codes, Phys. Rev. Lett 110, 170503 (2013), 1206.1609.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.170503
arXiv:1206.1609

[28] E. T. Campbell and J. O'Gorman, An efficient magic state approach to small angle rotations, Quantum Science and Technology 1, 015007 (2016), 1603.04230v2.
https:/​/​doi.org/​10.1088/​2058-9565/​1/​1/​015007
arXiv:1603.04230v2

[29] B. W. Reichardt, Improved magic states distillation for quantum universality, Quant. Inf. Proc. 4, 251–264 (2005), quant-ph/​0411036v1.
https:/​/​doi.org/​10.1007/​s11128-005-7654-8
arXiv:quant-ph/0411036v1

[30] A. M. Steane, Error correcting codes in quantum theory, Physical Review Letters 77, 793–797 (1996).
https:/​/​doi.org/​10.1103/​physrevlett.77.793

[31] H. Bombin and M. A. Martin-Delgado, Topological quantum distillation, Physical Review Letters 97, 180501 (2006), quant-ph/​0605138.
https:/​/​doi.org/​10.1103/​physrevlett.97.180501
arXiv:quant-ph/0605138

[32] B. Eastin, Distilling one-qubit magic states into toffoli states, Phys. Rev. A 87, 032321 (2013), 1212.4872v2.
https:/​/​doi.org/​10.1103/​PhysRevA.87.032321
arXiv:1212.4872v2

[33] C. Jones, Low-overhead constructions for the fault-tolerant toffoli gate, Physical Review A 87, 022328 (2013b), 1212.5069.
https:/​/​doi.org/​10.1103/​physreva.87.022328
arXiv:1212.5069

[34] E. T. Campbell and M. Howard, Unified framework for magic state distillation and multiqubit gate synthesis with reduced resource cost, Phys. Rev. A 95, 022316 (2017), 1606.01904.
https:/​/​doi.org/​10.1103/​PhysRevA.95.022316
arXiv:1606.01904

[35] S. Bravyi, B. Leemhuis, and B. M. Terhal, Majorana fermion codes, New J.Phys. 12, 083039 (2010), 1004.3791.
https:/​/​doi.org/​10.1088/​1367-2630/​12/​8/​083039
arXiv:1004.3791

[36] A. R. Calderbank and P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A 54, 1098–1105 (1996), quant-ph/​9512032.
https:/​/​doi.org/​10.1103/​PhysRevA.54.1098
arXiv:quant-ph/9512032

[37] D. Gottesman, Stabilizer codes and quantum error correction, (1997), quant-ph/​9705052.
arXiv:quant-ph/9705052

[38] J. Preskill, Lecture notes on quantum computation, Caltech Ph219.
http:/​/​www.theory.caltech.edu/​people/​preskill/​ph229/​notes/​chap7.pdf

[39] M. Sipser and D. A. Spielman, Expander codes, IEEE Transactions on Information Theory 42, 1710–1722 (1996).
https:/​/​doi.org/​10.1109/​18.556667

[40] Z. Furedi, F. Lazebnik, A. Seress, V. A. Ustimenko, and A. J. Woldar, Graphs of prescribed girth and bi-degree, Journal of Combinatorial Theory, Series B 64, 228–239 (1995).
https:/​/​doi.org/​10.1006/​jctb.1995.1033

[41] R. Raussendorf, J. Harrington, and K. Goyal, Topological fault-tolerance in cluster state quantum computation, New Journal of Physics 9, 199 (2007), quant-ph/​0703143v1.
https:/​/​doi.org/​10.1088/​1367-2630/​9/​6/​199
arXiv:quant-ph/0703143v1

[42] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Surface codes: Towards practical large-scale quantum computation, Phys. Rev. A 86, 032324 (2012), 1208.0928.
https:/​/​doi.org/​10.1103/​PhysRevA.86.032324
arXiv:1208.0928

[43] J. O'Gorman and E. T. Campbell, Quantum computation with realistic magic-state factories, Phys. Rev. A 95, 032338 (2017), 1605.07197.
https:/​/​doi.org/​10.1103/​PhysRevA.95.032338
arXiv:1605.07197

[44] M. Grassl and T. Beth, Quantum bch codes, in Proceedings X. International Symposium on Theoretical Electrical Engineering, Magdeburg (1999) pp. 207–212, quant-ph/​9910060.
arXiv:quant-ph/9910060

[45] J. Haah, M. B. Hastings, D. Poulin, and D. Wecker, Magic state distillation at intermediate size, 1709.02789.
arXiv:1709.02789

[46] M. B. Hastings, Small majorana fermion codes, 1703.00612.
arXiv:1703.00612

[47] E. T. Campbell, H. Anwar, and D. E. Browne, Magic state distillation in all prime dimensions using quantum reed-muller codes, Phys. Rev. X 2, 041021 (2012), 1205.3104.
https:/​/​doi.org/​10.1103/​PhysRevX.2.041021
arXiv:1205.3104

[48] E. T. Campbell, Enhanced fault-tolerant quantum computing in $d$-level systems, Phys. Rev. Lett. 113, 230501 (2014), 1406.3055.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.230501
arXiv:1406.3055

[49] G. Nebe, E. M. Rains, and N. J. A. Sloane, The invariants of the clifford groups, Designs, Codes and Cryptography 24, 99–122 (2001), math/​0001038.
https:/​/​doi.org/​10.1023/​a:1011233615437
arXiv:math/0001038

[50] G. Nebe, E. M. Rains, and N. J. A. Sloane, Self-Dual Codes and Invariant Theory (Springer-Verlag, 2006).
https:/​/​doi.org/​10.1007/​3-540-30731-1

[51] E. F. Assmus and J. D. Key, Designs and their Codes, 103 (Cambridge University Press, 1992).

[52] S. Vijay and L. Fu, Quantum error correction for complex and majorana fermion qubits, 1703.00459.
arXiv:1703.00459

[53] S. Lang, Algebra, revised 3rd ed. (Springer, 2002).

Cited by

[1] Jeongwan Haah, "Towers of generalized divisible quantum codes", Physical Review A 97 4, 042327 (2018).

[2] Kun Fang and Zi-Wen Liu, "No-Go Theorems for Quantum Resource Purification", Physical Review Letters 125 6, 060405 (2020).

[3] Isaac H. Kim, Ye-Hua Liu, Sam Pallister, William Pol, Sam Roberts, and Eunseok Lee, "Fault-tolerant resource estimate for quantum chemical simulations: Case study on Li-ion battery electrolyte molecules", Physical Review Research 4 2, 023019 (2022).

[4] Christopher Chamberland and Kyungjoo Noh, "Very low overhead fault-tolerant magic state preparation using redundant ancilla encoding and flag qubits", npj Quantum Information 6 1, 91 (2020).

[5] Jeongwan Haah, "Clifford quantum cellular automata: Trivial group in 2D and Witt group in 3D", Journal of Mathematical Physics 62 9, 092202 (2021).

[6] Ilkwon Sohn, Jeongho Bang, and Jun Heo, "Dynamic Concatenation of Quantum Error Correction in Integrated Quantum Computing Architecture", Scientific Reports 9 1, 3302 (2019).

[7] Xin Wang, Mark M Wilde, and Yuan Su, "Quantifying the magic of quantum channels", New Journal of Physics 21 10, 103002 (2019).

[8] Xin Wang, Mark M. Wilde, and Yuan Su, "Efficiently Computable Bounds for Magic State Distillation", Physical Review Letters 124 9, 090505 (2020).

[9] Héctor Bombín, Mihir Pant, Sam Roberts, and Karthik I. Seetharam, "Fault-Tolerant Postselection for Low-Overhead Magic State Preparation", PRX Quantum 5 1, 010302 (2024).

[10] Wai-Keong Mok, Hui Zhang, Tobias Haug, Xianshu Luo, Guo-Qiang Lo, Zhenyu Li, Hong Cai, M. S. Kim, Ai Qun Liu, and Leong-Chuan Kwek, "Rigorous noise reduction with quantum autoencoders", AVS Quantum Science 6 2, 023803 (2024).

[11] Jeongwan Haah and Matthew B. Hastings, "Measurement sequences for magic state distillation", Quantum 5, 383 (2021).

[12] Gaurav Saxena and Gilad Gour, "Quantifying multiqubit magic channels with completely stabilizer-preserving operations", Physical Review A 106 4, 042422 (2022).

[13] Jeongwan Haah, Lukasz Fidkowski, and Matthew B. Hastings, "Nontrivial Quantum Cellular Automata in Higher Dimensions", Communications in Mathematical Physics 398 1, 469 (2023).

[14] Akalank Jain and Shiroman Prakash, "Qutrit and ququint magic states", Physical Review A 102 4, 042409 (2020).

[15] Jeongwan Haah and Matthew B. Hastings, "Codes and Protocols for DistillingT, controlled-S, and Toffoli Gates", Quantum 2, 71 (2018).

[16] Minjia Shi, Haodong Lu, Jon-Lark Kim, and Patrick Solé, "Triorthogonal codes and self-dual codes", Quantum Information Processing 23 7, 280 (2024).

[17] Rawad Mezher, Joe Ghalbouni, Joseph Dgheim, and Damian Markham, "Fault-tolerant quantum speedup from constant depth quantum circuits", Physical Review Research 2 3, 033444 (2020).

[18] Narayanan Rengaswamy, Robert Calderbank, Swanand Kadhe, and Henry D. Pfister, "Logical Clifford Synthesis for Stabilizer Codes", IEEE Transactions on Quantum Engineering 1, 1 (2020).

[19] Christopher Chamberland and Andrew W. Cross, "Fault-tolerant magic state preparation with flag qubits", Quantum 3, 143 (2019).

[20] David Poulin, Alexei Kitaev, Damian S. Steiger, Matthew B. Hastings, and Matthias Troyer, "Quantum Algorithm for Spectral Measurement with a Lower Gate Count", Physical Review Letters 121 1, 010501 (2018).

[21] Diego Ristè, Luke C. G. Govia, Brian Donovan, Spencer D. Fallek, William D. Kalfus, Markus Brink, Nicholas T. Bronn, and Thomas A. Ohki, "Real-time processing of stabilizer measurements in a bit-flip code", npj Quantum Information 6 1, 71 (2020).

[22] Campbell K. McLauchlan and Benjamin Béri, "Fermion-Parity-Based Computation and Its Majorana-Zero-Mode Implementation", Physical Review Letters 128 18, 180504 (2022).

[23] Daniel Litinski, "Magic State Distillation: Not as Costly as You Think", Quantum 3, 205 (2019).

[24] Nikolaos Koukoulekidis and David Jennings, "Constraints on magic state protocols from the statistical mechanics of Wigner negativity", npj Quantum Information 8 1, 42 (2022).

[25] Ning Bao, ChunJun Cao, and Vincent Paul Su, "Magic state distillation from entangled states", Physical Review A 105 2, 022602 (2022).

[26] J. Eli Bourassa, Rafael N. Alexander, Michael Vasmer, Ashlesha Patil, Ilan Tzitrin, Takaya Matsuura, Daiqin Su, Ben Q. Baragiola, Saikat Guha, Guillaume Dauphinais, Krishna K. Sabapathy, Nicolas C. Menicucci, and Ish Dhand, "Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer", Quantum 5, 392 (2021).

[27] Sergey Bravyi, Oliver Dial, Jay M. Gambetta, Darío Gil, and Zaira Nazario, "The future of quantum computing with superconducting qubits", Journal of Applied Physics 132 16, 160902 (2022).

[28] James R. Seddon and Earl T. Campbell, "Quantifying magic for multi-qubit operations", Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 475 2227, 20190251 (2019).

[29] Eric Kubischta and Ian Teixeira, "Family of Quantum Codes with Exotic Transversal Gates", Physical Review Letters 131 24, 240601 (2023).

[30] Christopher Chamberland, Kyungjoo Noh, Patricio Arrangoiz-Arriola, Earl T. Campbell, Connor T. Hann, Joseph Iverson, Harald Putterman, Thomas C. Bohdanowicz, Steven T. Flammia, Andrew Keller, Gil Refael, John Preskill, Liang Jiang, Amir H. Safavi-Naeini, Oskar Painter, and Fernando G.S.L. Brandão, "Building a Fault-Tolerant Quantum Computer Using Concatenated Cat Codes", PRX Quantum 3 1, 010329 (2022).

[31] Rhea Alexander, Si Gvirtz-Chen, Nikolaos Koukoulekidis, and David Jennings, "General Entropic Constraints on Calderbank-Shor-Steane Codes within Magic Distillation Protocols", PRX Quantum 4 2, 020359 (2023).

[32] Yiting Liu, Zhi Ma, Lan Luo, Chao Du, Yangyang Fei, Hong Wang, Qianheng Duan, and Jing Yang, "Magic state distillation and cost analysis in fault-tolerant universal quantum computation", Quantum Science and Technology 8 4, 043001 (2023).

[33] Swamit S. Tannu, Zachary A. Myers, Prashant J. Nair, Douglas M. Carmean, and Moinuddin K. Qureshi, Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture 679 (2017) ISBN:9781450349529.

[34] Earl T. Campbell and Mark Howard, "Magic state parity-checker with pre-distilled components", Quantum 2, 56 (2018).

[35] Sepehr Nezami and Jeongwan Haah, "Classification of small triorthogonal codes", Physical Review A 106 1, 012437 (2022).

[36] Takaya Matsuura, Springer Theses 103 (2023) ISBN:978-981-19-8287-3.

[37] Eric Kubischta and Ian Teixeira, "Quantum Codes from Twisted Unitary t -Groups", Physical Review Letters 133 3, 030602 (2024).

[38] Christina Knapp, Eric M. Spanton, Andrea F. Young, Chetan Nayak, and Michael P. Zaletel, "Fractional Chern insulator edges and layer-resolved lattice contacts", Physical Review B 99 8, 081114 (2019).

[39] Michael Beverland, Earl Campbell, Mark Howard, and Vadym Kliuchnikov, "Lower bounds on the non-Clifford resources for quantum computations", Quantum Science and Technology 5 3, 035009 (2020).

[40] Karthik Kakaraparty, Edgard Munoz-Coreas, and Ifana Mahbub, 2021 IEEE MetroCon 1 (2021) ISBN:978-1-6654-0537-9.

[41] Campbell McLauchlan and Benjamin Béri, "A new twist on the Majorana surface code: Bosonic and fermionic defects for fault-tolerant quantum computation", Quantum 8, 1400 (2024).

[42] Christophe Vuillot and Nikolas P. Breuckmann, "Quantum Pin Codes", IEEE Transactions on Information Theory 68 9, 5955 (2022).

[43] Michael E. Beverland, Aleksander Kubica, and Krysta M. Svore, "Cost of Universality: A Comparative Study of the Overhead of State Distillation and Code Switching with Color Codes", PRX Quantum 2 2, 020341 (2021).

[44] Manoj G. Gowda and Pradeep Kiran Sarvepalli, "Color codes with twists: Construction and universal-gate-set implementation", Physical Review A 104 1, 012603 (2021).

[45] Yongshan Ding, Adam Holmes, Ali Javadi-Abhari, Diana Franklin, Margaret Martonosi, and Frederic Chong, 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO) 828 (2018) ISBN:978-1-5386-6240-3.

[46] Hayata Yamasaki, Takaya Matsuura, and Masato Koashi, "Cost-reduced all-Gaussian universality with the Gottesman-Kitaev-Preskill code: Resource-theoretic approach to cost analysis", Physical Review Research 2 2, 023270 (2020).

[47] Torsten Karzig, Yuval Oreg, Gil Refael, and Michael H. Freedman, "Robust Majorana magic gates via measurements", Physical Review B 99 14, 144521 (2019).

[48] Kyungjoo Noh, Liang Jiang, and Bill Fefferman, "Efficient classical simulation of noisy random quantum circuits in one dimension", Quantum 4, 318 (2020).

[49] Matthew B. Hastings and Jeongwan Haah, "Distillation with Sublogarithmic Overhead", Physical Review Letters 120 5, 050504 (2018).

[50] Travis L. Scholten, Carl J. Williams, Dustin Moody, Michele Mosca, William Hurley, William J. Zeng, Matthias Troyer, and Jay M. Gambetta, "Assessing the Benefits and Risks of Quantum Computers", arXiv:2401.16317, (2024).

[51] Xin Wang, Mark M. Wilde, and Yuan Su, "Quantifying the magic of quantum channels", arXiv:1903.04483, (2019).

[52] Xin Wang, Mark M. Wilde, and Yuan Su, "Efficiently computable bounds for magic state distillation", arXiv:1812.10145, (2018).

[53] Narayanan Rengaswamy, Robert Calderbank, Swanand Kadhe, and Henry D. Pfister, "Logical Clifford Synthesis for Stabilizer Codes", arXiv:1907.00310, (2019).

[54] Patrick Rall, "Fractal Properties of Magic State Distillation", arXiv:1708.09256, (2017).

[55] Adam Holmes, Yongshan Ding, Ali Javadi-Abhari, Diana Franklin, Margaret Martonosi, and Frederic T. Chong, "Resource Optimized Quantum Architectures for Surface Code Implementations of Magic-State Distillation", arXiv:1904.11528, (2019).

The above citations are from Crossref's cited-by service (last updated successfully 2024-09-13 07:04:21) and SAO/NASA ADS (last updated successfully 2024-09-13 07:04:23). The list may be incomplete as not all publishers provide suitable and complete citation data.