SQuADDS: A validated design database and simulation workflow for superconducting qubit design

Sadman Shanto1,2, Andre Kuo1,2, Clark Miyamoto1,2, Haimeng Zhang1,3, Vivek Maurya1,2, Evangelos Vlachos1,2, Malida Hecht1,2, Chung Wa Shum1,2, and Eli Levenson-Falk1,2,3

1Center for Quantum Information Science and Technology, University of Southern California
2Department of Physics and Astronomy, University of Southern California
3Department of Electrical and Computer Engineering, University of Southern California

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We present an open-source database of superconducting quantum device designs that may be used as the starting point for customized devices. Each design can be generated programmatically using the open-source Qiskit Metal package, and simulated using finite-element electromagnetic solvers. We present a robust workflow for achieving high accuracy on design simulations. Many designs in the database are experimentally validated, showing excellent agreement between simulated and measured parameters. Our database includes a front-end interface that allows users to generate ``best-guess'' designs based on desired circuit parameters. This project lowers the barrier to entry for research groups seeking to make a new class of devices by providing them a well-characterized starting point from which to refine their designs.

Devices made from superconducting circuits are a leading quantum information technology, in part because their properties can be easily engineered by changing the circuit design. This leads to the problem of determining how to physically lay out a circuit in order to produce certain target behavior. This problem is challenging, often requiring computationally-intense simulations and many rounds of time-consuming trial-and-error. In this paper we present SQuADDS, a Superconducting Qubit And Device Design and Simulation database. This database and associated Python package allows users to put in a set of target device properties, and receive a premade design that has already been simulated to produce the desired behavior. This software aims to solve the design problem in superconducting quantum devices, speeding progress and lowering barriers to entry.

► BibTeX data

► References

[1] ``Qiskit Metal''. https:/​/​qiskit.org/​metal.
https:/​/​qiskit.org/​metal

[2] Peter Groszkowski and Jens Koch. ``Scqubits: A Python package for superconducting qubits''. Quantum 5, 583 (2021).
https:/​/​doi.org/​10.22331/​q-2021-11-17-583

[3] Philipp Aumann, Tim Menke, William D. Oliver, and Wolfgang Lechner. ``CircuitQ: An open-source toolbox for superconducting circuits''. New Journal of Physics 24, 093012 (2022).
https:/​/​doi.org/​10.1088/​1367-2630/​ac8cab

[4] Taha Rajabzadeh, Zhaoyou Wang, Nathan Lee, Takuma Makihara, Yudan Guo, and Amir H. Safavi-Naeini. ``Analysis of arbitrary superconducting quantum circuits accompanied by a Python package: SQcircuit''. Quantum 7, 1118 (2023).
https:/​/​doi.org/​10.22331/​q-2023-09-25-1118

[5] Tetsufumi Tanamoto, Toyofumi Ishikawa, Kunihiro Inomata, Shumpei Masuda, Tamio Omuma, and Shiro Kawabata. ``Classical SPICE simulation of superconducting quantum circuits''. Applied Physics Express 16, 034501 (2023).
https:/​/​doi.org/​10.35848/​1882-0786/​acc3d8

[6] Fei Yan, Youngkyu Sung, Philip Krantz, Archana Kamal, David K. Kim, Jonilyn L. Yoder, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. ``Engineering Framework for Optimizing Superconducting Qubit Designs'' (2020). arxiv:2006.04130.
arXiv:2006.04130

[7] Tim Menke, Florian Häse, Simon Gustavsson, Andrew J. Kerman, William D. Oliver, and Alán Aspuru-Guzik. ``Automated design of superconducting circuits and its application to 4-local couplers''. npj Quantum Information 7, 1–8 (2021).
https:/​/​doi.org/​10.1038/​s41534-021-00382-6

[8] Jay W. McDaniel. ``Simulation Guidelines for Wideband Ground Backed Coplanar Waveguide Transmission Lines''. In 2019 IEEE 20th Wireless and Microwave Technology Conference (WAMICON). Pages 1–5. (2019).
https:/​/​doi.org/​10.1109/​WAMICON.2019.8765451

[9] Jens Koch, Terri Yu, Jay Gambetta, a. Houck, D. Schuster, J. Majer, Alexandre Blais, M. Devoret, S. Girvin, and R. Schoelkopf. ``Charge-insensitive qubit design derived from the Cooper pair box''. Physical Review A 76, 1–19 (2007).
https:/​/​doi.org/​10.1103/​PhysRevA.76.042319

[10] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver. ``A quantum engineer's guide to superconducting qubits''. Applied Physics Reviews 6, 021318 (2019).
https:/​/​doi.org/​10.1063/​1.5089550

[11] Andrew J. Kerman. ``Efficient numerical simulation of complex Josephson quantum circuits'' (2020). arxiv:2010.14929.
arXiv:2010.14929

[12] Ross Shillito, Alexandru Petrescu, Joachim Cohen, Jackson Beall, Markus Hauru, Martin Ganahl, Adam G.M. Lewis, Guifre Vidal, and Alexandre Blais. ``Dynamics of Transmon Ionization''. Physical Review Applied 18, 034031 (2022).
https:/​/​doi.org/​10.1103/​PhysRevApplied.18.034031

[13] Vivek Maurya, Haimeng Zhang, Daria Kowsari, Andre Kuo, Darian M. Hartsell, Clark Miyamoto, Jocelyn Liu, Sadman Shanto, Evangelos Vlachos, Azarin Zarassi, Kater W. Murch, and Eli M. Levenson-Falk. ``On-Demand Driven Dissipation for Cavity Reset and Cooling''. PRX Quantum 5, 020321 (2024).
https:/​/​doi.org/​10.1103/​PRXQuantum.5.020321

[14] Jocelyn Liu, Haimeng Zhang, Darian Hartsell, Clark Miyamoto, Vivek Maurya, and Eli Levenson-Falk. ``Experimental characterization of a modular dissipator for on-demand cavity cooling''. Bulletin of the American Physical Society (2023).

[15] Zlatko K. Minev, Zaki Leghtas, Shantanu O. Mundhada, Lysander Christakis, Ioan M. Pop, and Michel H. Devoret. ``Energy-participation quantization of Josephson circuits''. npj Quantum Information 7, 1–11 (2021).
https:/​/​doi.org/​10.1038/​s41534-021-00461-8

[16] Dennis Willsch, Dennis Rieger, Patrick Winkel, Madita Willsch, Christian Dickel, Jonas Krause, Yoichi Ando, Raphaël Lescanne, Zaki Leghtas, Nicholas T. Bronn, Pratiti Deb, Olivia Lanes, Zlatko K. Minev, Benedikt Dennig, Simon Geisert, Simon Günzler, Sören Ihssen, Patrick Paluch, Thomas Reisinger, Roudy Hanna, Jin Hee Bae, Peter Schüffelgen, Detlev Grützmacher, Luiza Buimaga-Iarinca, Cristian Morari, Wolfgang Wernsdorfer, David P. DiVincenzo, Kristel Michielsen, Gianluigi Catelani, and Ioan M. Pop. ``Observation of Josephson Harmonics in Tunnel Junctions'' (2023). arxiv:2302.09192.
https:/​/​doi.org/​10.1038/​s41567-024-02400-8
arXiv:2302.09192

[17] Chandrashekhar Gaikwad, Daria Kowsari, Carson Brame, Xingrui Song, Haimeng Zhang, Martina Esposito, Arpit Ranadive, Giulio Cappelli, Nicolas Roch, Eli M. Levenson-Falk, and Kater W. Murch. ``Entanglement Assisted Probe of the Non-Markovian to Markovian Transition in Open Quantum System Dynamics''. Physical Review Letters 132, 200401 (2024).
https:/​/​doi.org/​10.1103/​PhysRevLett.132.200401

[18] Ilya Besedin and Alexey P. Menushenkov. ``Quality factor of a transmission line coupled coplanar waveguide resonator''. EPJ Quantum Technology 5, 1–16 (2018).
https:/​/​doi.org/​10.1140/​epjqt/​s40507-018-0066-3

[19] Zlatko K. Minev, Thomas G. McConkey, Maika Takita, Antonio D. Corcoles, and Jay M. Gambetta. ``Circuit quantum electrodynamics (cQED) with modular quasi-lumped models'' (2021). arxiv:2103.10344.
arXiv:2103.10344

[20] ``SQuADDS repository''. https:/​/​github.com/​LFL-Lab/​SQuADDS.
https:/​/​github.com/​LFL-Lab/​SQuADDS

[21] ``awslabs/​palace: 3D finite element solver for computational electromagnetics''. https:/​/​github.com/​awslabs/​palace.
https:/​/​github.com/​awslabs/​palace

[22] ``SQuADDS database''. https:/​/​huggingface.co/​datasets/​SQuADDS/​SQuADDS_DB.
https:/​/​huggingface.co/​datasets/​SQuADDS/​SQuADDS_DB

[23] Ferris Prima Nugraha and Qiming Shao. ``Machine learning-based predictive modeling for designing transmon superconducting qubits''. In 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). Volume 01, pages 1360–1368. (2023).
https:/​/​doi.org/​10.1109/​QCE57702.2023.00154

[24] C. Zhang, J. Jin, W. Na, Q. J. Zhang, and M. Yu. ``Multivalued neural network inverse modeling and applications to microwave filters''. IEEE Transactions on Microwave Theory and Techniques 66, 3781–3797 (2018).
https:/​/​doi.org/​10.1109/​TMTT.2018.2841889

[25] F. Feng, W. Na, J. Jin, J. Zhang, W. Zhang, and Q. J. Zhang. ``Artificial neural networks for microwave computer-aided design: The state of the art''. IEEE Transactions on Microwave Theory and Techniques 70, 4597–4619 (2022).
https:/​/​doi.org/​10.1109/​TMTT.2022.3197751

[26] G. Huang, J. Hu, Y. He, J. Liu, M. Ma, Z. Shen, J. Wu, Y. Xu, H. Zhang, K. Zhong, X. Ning, Y. Ma, H. Yang, B. Yu, H. Yang, and Y. Wang. ``Machine learning for electronic design automation: A survey''. ACM Transactions on Design Automation of Electronic Systems 26, 1–46 (2021).
https:/​/​doi.org/​10.1145/​3451179

Cited by

[1] M. O. Hecht, Kumar Saurav, Evangelos Vlachos, Daniel A. Lidar, and Eli M. Levenson-Falk, "Beating the Ramsey limit on sensing with deterministic qubit control", arXiv:2408.15926, (2024).

[2] Vinay Tripathi, Daria Kowsari, Kumar Saurav, Haimeng Zhang, Eli M. Levenson-Falk, and Daniel A. Lidar, "Deterministic Benchmarking of Quantum Gates", arXiv:2407.09942, (2024).

The above citations are from SAO/NASA ADS (last updated successfully 2024-09-15 01:37:07). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-09-15 01:37:06).