Adiabatic quantum trajectories in engineered reservoirs

Emma C. King1, Luigi Giannelli2,3,4, Raphaël Menu1, Johannes N. Kriel5, and Giovanna Morigi1

1Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
2Dipartimento di Fisica e Astronomia ``Ettore Majorana'', Università di Catania, Via S. Sofia 64, 95123 Catania, Italy
3CNR-IMM, UoS Università, 95123 Catania, Italy
4INFN Sezione di Catania, 95123 Catania, Italy
5Institute of Theoretical Physics, Stellenbosch University, Stellenbosch 7600, South Africa

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We analyze the efficiency of protocols for adiabatic quantum state transfer assisted by an engineered reservoir. The target dynamics is a quantum trajectory in the Hilbert space and is a fixed point of a time-dependent master equation in the limit of adiabatic dynamics. We specialize to quantum state transfer in a qubit and determine the optimal schedule for a class of time-dependent Lindblad equations. The speed limit on state transfer is extracted from a physical model of a qubit coupled to a reservoir, from which the Lindblad equation is derived in the Born-Markov limit. Our analysis shows that the resulting efficiency is comparable to the efficiency of the optimal unitary dynamics. Numerical studies indicate that reservoir-engineered protocols could outperform unitary protocols outside the regime of the Born-Markov master equation, namely, when correlations between the qubit and reservoir become relevant. Our study contributes to the theory of shortcuts to adiabaticity for open quantum systems and to the toolbox of protocols of the NISQ era.

Recent scientific breakthroughs and technological advancements have propelled us into the Noisy Intermediate-Scale Quantum (NISQ) era. While fault-tolerant quantum computers are now closer to reality, current NISQ devices struggle with noise mitigation and scalability.

Recent works suggest that protocols based on engineered reservoirs might improve the efficiency of adiabatic transfer, an important element of adiabatic quantum computing. This highlights the need to quantitatively assess the efficiency of these protocols with respect to their unitary counterparts.

In our work, we consider quantum state transfer in a qubit, the simplest element of a quantum computer. We determine the fastest time at which the transfer can be performed when the qubit undergoes an incoherent dynamics designed by the coupling with a reservoir, which tends to suppress unwanted excitations. By comparing the efficiency of this reservoir-engineered protocol to that of optimal unitary dynamics, we rigorously show that, when the reservoir is memoryless, the latter outperforms the reservoir-engineered protocol. Our insights contribute to the theory of shortcuts to adiabaticity for open quantum systems and to the toolbox of protocols of the NISQ era.

► BibTeX data

► References

[1] T. Albash and D. A. Lidar. ``Adiabatic quantum computation''. Rev. Mod. Phys. 90, 015002 (2018).
https:/​/​doi.org/​10.1103/​RevModPhys.90.015002

[2] N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann. ``Stimulated raman adiabatic passage in physics, chemistry, and beyond''. Rev. Mod. Phys. 89, 015006 (2017).
https:/​/​doi.org/​10.1103/​RevModPhys.89.015006

[3] G. E. Santoro and E. Tosatti. ``Optimization using quantum mechanics: quantum annealing through adiabatic evolution''. J. Phys. A: Math. Gen. 39, R393–R431 (2006).
https:/​/​doi.org/​10.1088/​0305-4470/​39/​36/​r01

[4] M. Keck, S. Montangero, G. E. Santoro, R. Fazio, and D. Rossini. ``Dissipation in adiabatic quantum computers: lessons from an exactly solvable model''. New J. Phys. 19, 113029 (2017).
https:/​/​doi.org/​10.1088/​1367-2630/​aa8cef

[5] J. Preskill. ``Quantum Computing in the NISQ era and beyond''. Quantum 2, 79 (2018).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[6] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, and J. G. Muga. ``Shortcuts to adiabaticity: Concepts, methods, and applications''. Rev. Mod. Phys. 91, 045001 (2019).
https:/​/​doi.org/​10.1103/​RevModPhys.91.045001

[7] A. del Campo and K. Kim. ``Focus on shortcuts to adiabaticity''. New Journal of Physics 21, 050201 (2019).
https:/​/​doi.org/​10.1088/​1367-2630/​ab1437

[8] P. von den Hoff, S. Thallmair, M. Kowalewski, R. Siemering, and R. de Vivie-Riedle. ``Optimal control theory – closing the gap between theory and experiment''. Phys. Chem. Chem. Phys. 14, 14460–14485 (2012).
https:/​/​doi.org/​10.1039/​C2CP41838J

[9] C. P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Filipp, S. J. Glaser, R. Kosloff, S. Montangero, T. Schulte-Herbrüggen, D. Sugny, and F. K. Wilhelm. ``Quantum optimal control in quantum technologies. strategic report on current status, visions and goals for research in europe''. EPJ Quantum Technology 9, 19 (2022).
https:/​/​doi.org/​10.1140/​epjqt/​s40507-022-00138-x

[10] L. Giannelli, P. Sgroi, J. Brown, G. S. Paraoanu, M. Paternostro, E. Paladino, and G. Falci. ``A tutorial on optimal control and reinforcement learning methods for quantum technologies''. Physics Letters A 434, 128054 (2022).
https:/​/​doi.org/​10.1016/​j.physleta.2022.128054

[11] T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, and G. E. Santoro. ``Optimal control at the quantum speed limit''. Phys. Rev. Lett. 103, 240501 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.103.240501

[12] S. Deffner and S. Campbell. ``Quantum speed limits: from heisenberg's uncertainty principle to optimal quantum control''. Journal of Physics A: Mathematical and Theoretical 50, 453001 (2017).
https:/​/​doi.org/​10.1088/​1751-8121/​aa86c6

[13] J. F. Poyatos, J. I. Cirac, and P. Zoller. ``Quantum reservoir engineering with laser cooled trapped ions''. Phys. Rev. Lett. 77, 4728–4731 (1996).
https:/​/​doi.org/​10.1103/​PhysRevLett.77.4728

[14] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller. ``Preparation of entangled states by quantum markov processes''. Phys. Rev. A 78, 042307 (2008).
https:/​/​doi.org/​10.1103/​PhysRevA.78.042307

[15] S. Roy, J. T. Chalker, I. V. Gornyi, and Y. Gefen. ``Measurement-induced steering of quantum systems''. Phys. Rev. Res. 2, 033347 (2020).
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033347

[16] A. del Campo, I. L. Egusquiza, M. B. Plenio, and S. F. Huelga. ``Quantum speed limits in open system dynamics''. Phys. Rev. Lett. 110, 050403 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.110.050403

[17] K. Funo, N. Shiraishi, and K. Saito. ``Speed limit for open quantum systems''. New Journal of Physics 21, 013006 (2019).
https:/​/​doi.org/​10.1088/​1367-2630/​aaf9f5

[18] T. Fogarty, S. Deffner, T. Busch, and S. Campbell. ``Orthogonality catastrophe as a consequence of the quantum speed limit''. Phys. Rev. Lett. 124, 110601 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.110601

[19] S. Pielawa, G. Morigi, D. Vitali, and L. Davidovich. ``Generation of einstein-podolsky-rosen-entangled radiation through an atomic reservoir''. Phys. Rev. Lett. 98, 240401 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.98.240401

[20] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski, J. M. Petersen, J. I. Cirac, and E. S. Polzik. ``Entanglement generated by dissipation and steady state entanglement of two macroscopic objects''. Phys. Rev. Lett. 107, 080503 (2011).
https:/​/​doi.org/​10.1103/​PhysRevLett.107.080503

[21] Y. Lin, J. P. Gaebler, F. Reiter, T. R. Tan, R. Bowler, A. S. Sørensen, D. Leibfried, and D. J. Wineland. ``Dissipative production of a maximally entangled steady state of two quantum bits''. Nature 504, 415–418 (2013).
https:/​/​doi.org/​10.1038/​nature12801

[22] G. Morigi, J. Eschner, C. Cormick, Y. Lin, D. Leibfried, and D. J. Wineland. ``Dissipative quantum control of a spin chain''. Phys. Rev. Lett. 115, 200502 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.200502

[23] F. Verstraete, M. M. Wolf, and J. Ignacio Cirac. ``Quantum computation and quantum-state engineering driven by dissipation''. Nature Physics 5, 633–636 (2009).
https:/​/​doi.org/​10.1038/​nphys1342

[24] J. T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C. F. Roos, P. Zoller, and R. Blatt. ``An open-system quantum simulator with trapped ions''. Nature 470, 486–491 (2011).
https:/​/​doi.org/​10.1038/​nature09801

[25] K. G. H. Vollbrecht, C. A. Muschik, and J. Ignacio Cirac. ``Entanglement distillation by dissipation and continuous quantum repeaters''. Phys. Rev. Lett. 107, 120502 (2011).
https:/​/​doi.org/​10.1103/​PhysRevLett.107.120502

[26] B. Bylicka, D. Chruściński, and S. Maniscalco. ``Non-markovianity and reservoir memory of quantum channels: a quantum information theory perspective''. Scientific Reports 4, 5720 (2014).
https:/​/​doi.org/​10.1038/​srep05720

[27] G. Vacanti, R. Fazio, S. Montangero, G. M. Palma, M. Paternostro, and V. Vedral. ``Transitionless quantum driving in open quantum systems''. New Journal of Physics 16, 053017 (2014).
https:/​/​doi.org/​10.1088/​1367-2630/​16/​5/​053017

[28] S. Alipour, A. Chenu, A. T. Rezakhani, and A. del Campo. ``Shortcuts to Adiabaticity in Driven Open Quantum Systems: Balanced Gain and Loss and Non-Markovian Evolution''. Quantum 4, 336 (2020).
https:/​/​doi.org/​10.22331/​q-2020-09-28-336

[29] R. Menu, J. Langbehn, C. P. Koch, and G. Morigi. ``Reservoir-engineering shortcuts to adiabaticity''. Phys. Rev. Research 4, 033005 (2022).
https:/​/​doi.org/​10.1103/​PhysRevResearch.4.033005

[30] L. C. Venuti, T. Albash, M. Marvian, D. Lidar, and P. Zanardi. ``Relaxation versus adiabatic quantum steady-state preparation''. Phys. Rev. A 95, 042302 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.042302

[31] D. S. Wild, S. Gopalakrishnan, M. Knap, N. Y. Yao, and M. D. Lukin. ``Adiabatic quantum search in open systems''. Phys. Rev. Lett. 117, 150501 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.150501

[32] J. Roland and N. J. Cerf. ``Quantum search by local adiabatic evolution''. Phys. Rev. A 65, 042308 (2002).
https:/​/​doi.org/​10.1103/​PhysRevA.65.042308

[33] J. E. Avron, M. Fraas, G. M. Graf, and P. Grech. ``Optimal time schedule for adiabatic evolution''. Phys. Rev. A 82, 040304 (2010).
https:/​/​doi.org/​10.1103/​PhysRevA.82.040304

[34] V. V. Albert, B. Bradlyn, M. Fraas, and L. Jiang. ``Geometry and response of lindbladians''. Phys. Rev. X 6, 041031 (2016).
https:/​/​doi.org/​10.1103/​PhysRevX.6.041031

[35] M. Born and V. Fock. ``Beweis des adiabatensatzes''. Zeitschrift für Physik 51, 165–180 (1928).
https:/​/​doi.org/​10.1007/​BF01343193

[36] T. Kato. ``On the adiabatic theorem of quantum mechanics''. J. Phys. Soc. Jpn. 5, 435–439 (1950).
https:/​/​doi.org/​10.1143/​JPSJ.5.435

[37] C. Zener. ``Non-adiabatic crossing of energy levels''. Proc. R. Soc. London A 137, 696–702 (1932).
https:/​/​doi.org/​10.1098/​rspa.1932.0165

[38] L. D. Landau. ``A theory of energy transfer II''. In D. Ter Haar, editor, Collected Papers of L.D. Landau. Pages 63–66. Pergamon Press (1965).
https:/​/​doi.org/​10.1016/​B978-0-08-010586-4.50014-6

[39] L. D. Landau. ``Zur theorie der energieübertragung II (a theory of energy transfer II)''. Physikalische Zeitschrift der Sowjetunion 2, 46–51 (1932).
https:/​/​doi.org/​10.1016/​B978-0-08-010586-4.50014-6

[40] K. Mullen, E. Ben-Jacob, Y. Gefen, and Z. Schuss. ``Time of zener tunneling''. Phys. Rev. Lett. 62, 2543–2546 (1989).
https:/​/​doi.org/​10.1103/​PhysRevLett.62.2543

[41] C. De Grandi and A. Polkovnikov. ``Adiabatic perturbation theory: From Landau–Zener problem to quenching through a quantum critical point''. Pages 75–114. Springer Berlin Heidelberg. (2010).
https:/​/​doi.org/​10.1007/​978-3-642-11470-0_4

[42] M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch. ``High-fidelity quantum driving''. Nature Physics 8, 147–152 (2012).
https:/​/​doi.org/​10.1038/​nphys2170

[43] N. Malossi, M. G. Bason, M. Viteau, E. Arimondo, R. Mannella, O. Morsch, and D. Ciampini. ``Quantum driving protocols for a two-level system: From generalized Landau-Zener sweeps to transitionless control''. Physical Review A 87, 012116 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.87.012116

[44] H.-P. Breuer and F. Petruccione. ``The theory of open quantum systems''. Oxford University Press, Oxford. (2007).
https:/​/​doi.org/​10.1093/​acprof:oso/​9780199213900.001.0001

[45] J. E. Avron, M. Fraas, G. M. Graf, and O. Kenneth. ``Quantum response of dephasing open systems''. New J. Phys. 13, 053042 (2011).
https:/​/​doi.org/​10.1088/​1367-2630/​13/​5/​053042

[46] J. E. Avron, M. Fraas, and G. M. Graf. ``Adiabatic Response for Lindblad Dynamics''. J. Stat. Phys. 148, 800–823 (2012).
https:/​/​doi.org/​10.1007/​s10955-012-0550-6

[47] J. E. Avron, R. Seiler, and L. G. Yaffe. ``Adiabatic theorems and applications to the quantum hall effect''. Commun. Math. Phys. 110, 33–49 (1987).
https:/​/​doi.org/​10.1007/​BF01209015

[48] J. E. Avron, M. Fraas, G. M. Graf, and P. Grech. ``Adiabatic theorems for generators of contracting evolutions''. Commun. Math. Phys. 314, 163–191 (2012).
https:/​/​doi.org/​10.1007/​s00220-012-1504-1

[49] L. C. Venuti, T. Albash, D. A. Lidar, and P. Zanardi. ``Adiabaticity in open quantum systems''. Phys. Rev. A 93, 032118 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.032118

[50] M. Fraas and L. Hänggli. ``On landau–zener transitions for dephasing lindbladians''. Ann. Henri Poincaré 18, 2447–2465 (2017).
https:/​/​doi.org/​10.1007/​s00023-017-0567-0

[51] T. Albash, S. Boixo, D. A. Lidar, and P. Zanardi. ``Quantum adiabatic markovian master equations''. New J. Phys. 14, 123016 (2012).
https:/​/​doi.org/​10.1088/​1367-2630/​14/​12/​123016

[52] S. Teufel. ``Adiabatic perturbation theory in quantum dynamics''. Springer Berlin, Heidelberg. (2003).
https:/​/​doi.org/​10.1007/​b13355

[53] F. Minganti, A. Biella, N. Bartolo, and C. Ciuti. ``Spectral theory of liouvillians for dissipative phase transitions''. Phys. Rev. A 98, 042118 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.042118

[54] G. A. Paz-Silva, A. T. Rezakhani, J. M. Dominy, and D. A. Lidar. ``Zeno effect for quantum computation and control''. Phys. Rev. Lett. 108, 080501 (2012).
https:/​/​doi.org/​10.1103/​PhysRevLett.108.080501

[55] J. M. Raimond, P. Facchi, B. Peaudecerf, S. Pascazio, C. Sayrin, I. Dotsenko, S. Gleyzes, M. Brune, and S. Haroche. ``Quantum zeno dynamics of a field in a cavity''. Phys. Rev. A 86, 032120 (2012).
https:/​/​doi.org/​10.1103/​PhysRevA.86.032120

[56] E. C. King, L. Giannelli, R. Menu, J. N. Kriel, and G. Morigi. ``Adiabatic quantum trajectories in engineered reservoirs - code''. Zenodo (2024).
https:/​/​doi.org/​10.5281/​zenodo.11058607

[57] D. Tamascelli, A. Smirne, S. F. Huelga, and M. B. Plenio. ``Nonperturbative treatment of non-markovian dynamics of open quantum systems''. Phys. Rev. Lett. 120, 030402 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.120.030402

[58] T. Brown, E. Doucet, D. Ristè, G. Ribeill, K. Cicak, J. Aumentado, R. Simmonds, L. Govia, A. Kamal, and L. Ranzani. ``Trade off-free entanglement stabilization in a superconducting qutrit-qubit system''. Nature Communications 13, 3994 (2022).
https:/​/​doi.org/​10.1038/​s41467-022-31638-0

[59] J. E. Avron, M. Fraas, G. M. Graf, and P. Grech. ``Landau-Zener tunneling for dephasing Lindblad evolutions''. Commun. Math. Phys. 305, 633–639 (2011).
https:/​/​doi.org/​10.1007/​s00220-011-1269-y

[60] A. Rivas and S. F. Huelga. ``Open quantum systems''. Springer Berlin, Heidelberg. (2011).
https:/​/​doi.org/​10.1007/​978-3-642-23354-8

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2024-09-07 22:55:36). On SAO/NASA ADS no data on citing works was found (last attempt 2024-09-07 22:55:37).