Universal framework for simultaneous tomography of quantum states and SPAM noise

Abhijith Jayakumar1, Stefano Chessa1,2,3, Carleton Coffrin4, Andrey Y. Lokhov1, Marc Vuffray1, and Sidhant Misra1

1Theoretical Division, Los Alamos National Laboratory, 87545, NM, USA
2NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126, Pisa, Italy
3Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, 61801, IL, USA
4Los Alamos National Laboratory, Los Alamos, 87545, NM, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We present a general denoising algorithm for performing $\textit{simultaneous tomography}$ of quantum states and measurement noise. This algorithm allows us to fully characterize state preparation and measurement (SPAM) errors present in any quantum system. Our method is based on the analysis of the properties of the linear operator space induced by unitary operations. Given any quantum system with a noisy measurement apparatus, our method can output the quantum state and the noise matrix of the detector up to a single gauge degree of freedom. We show that this gauge freedom is unavoidable in the general case, but this degeneracy can be generally broken using prior knowledge on the state or noise properties, thus fixing the gauge for several types of state-noise combinations with no assumptions about noise strength. Such combinations include pure quantum states with arbitrarily correlated errors, and arbitrary states with block independent errors. This framework can further use available prior information about the setting to systematically reduce the number of observations and measurements required for state and noise detection. Our method effectively generalizes existing approaches to the problem, and includes as special cases common settings considered in the literature requiring an uncorrelated or invertible noise matrix, or specific probe states.

The state of a quantum computer cannot be directly observed; instead, it needs to be reconstructed from outcomes of carefully chosen measurements made repeatedly on the computer. This reconstruction task is called quantum tomography.

Quantum computers are affected by many sources of noise. Even a perfect quantum computer with no noise will produce random outputs due to the inherently stochastic nature of quantum measurements, as demonstrated by Schrödinger's cat. In our work, we present a very general tomographic algorithm that allows users to reconstruct the quantum state and the state preparation and measurement (SPAM) noise matrix simultaneously by post-processing the outputs of quantum measurements.

This is a challenging problem because it is often not possible to uniquely reconstruct the state in the presence of this type of noise. The observed randomness can be due to either the quantum nature of measurement or the noise in the system, and it can be shown that these two sources cannot be unambiguously discriminated solely from the measurements. However, we demonstrate several cases in which this ambiguity can be resolved by using additional information about the system.

Our tomography algorithm can be implemented on a qubit-based quantum computer by making randomized measurements on the system. Our theoretical analysis of this algorithm explicitly shows that the problem becomes progressively harder as the computer becomes noisier.

► BibTeX data

► References

[1] Scott Aaronson and Lijie Chen. Complexity-theoretic foundations of quantum supremacy experiments. In Proceedings of the 32nd Computational Complexity Conference, CCC '17, Dagstuhl, DEU, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 9783959770408. 10.48550/​arXiv.1612.05903.
https:/​/​doi.org/​10.48550/​arXiv.1612.05903

[2] C. G. Almudever, L. Lao, X. Fu, N. Khammassi, I. Ashraf, D. Iorga, S. Varsamopoulos, C. Eichler, A. Wallraff, L. Geck, A. Kruth, J. Knoch, H. Bluhm, and K Bertels. The engineering challenges in quantum computing. In Design, Automation & Test in Europe Conference & Exhibition, 2017, pages 836–845, 2017. 10.23919/​DATE.2017.7927104.
https:/​/​doi.org/​10.23919/​DATE.2017.7927104

[3] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574 (7779): 505–510, Oct 2019. ISSN 1476-4687. 10.1038/​s41586-019-1666-5.
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[4] Robin Blume-Kohout, John King Gamble, Erik Nielsen, Jonathan Mizrahi, Jonathan D. Sterk, and Peter Maunz. Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit. 2013. 10.48550/​ARXIV.1310.4492.
https:/​/​doi.org/​10.48550/​ARXIV.1310.4492

[5] Adam Bouland, Bill Fefferman, Zeph Landau, and Yunchao Liu. Noise and the frontier of quantum supremacy. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 1308–1317, 2022. 10.1109/​FOCS52979.2021.00127.
https:/​/​doi.org/​10.1109/​FOCS52979.2021.00127

[6] Colin D. Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M. Sage. Trapped-ion quantum computing: Progress and challenges. Applied Physics Reviews, 6 (2): 021314, 2019. 10.1063/​1.5088164.
https:/​/​doi.org/​10.1063/​1.5088164

[7] Iulia Buluta, Sahel Ashhab, and Franco Nori. Natural and artificial atoms for quantum computation. Reports on Progress in Physics, 74 (10): 104401, sep 2011. 10.1088/​0034-4885/​74/​10/​104401.
https:/​/​doi.org/​10.1088/​0034-4885/​74/​10/​104401

[8] Zhenyu Cai, Ryan Babbush, Simon C Benjamin, Suguru Endo, William J Huggins, Ying Li, Jarrod R McClean, and Thomas E O’Brien. Quantum error mitigation. Reviews of Modern Physics, 95 (4): 045005, 2023. 10.1103/​RevModPhys.95.045005.
https:/​/​doi.org/​10.1103/​RevModPhys.95.045005

[9] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. Roads towards fault-tolerant universal quantum computation. Nature, 549 (7671): 172–179, Sep 2017. ISSN 1476-4687. 10.1038/​nature23460.
https:/​/​doi.org/​10.1038/​nature23460

[10] Rohit Chaurasiya and Devanshi Arora. Photonic Quantum Computing, pages 127–156. Springer International Publishing, Cham, 2022. ISBN 978-3-031-04613-1. 10.1007/​978-3-031-04613-1_4.
https:/​/​doi.org/​10.1007/​978-3-031-04613-1_4

[11] S. S Chehade and A. Vershynina. Quantum entropies. Scholarpedia, 14 (2): 53131, 2019. 10.4249/​scholarpedia.53131. revision #197083.
https:/​/​doi.org/​10.4249/​scholarpedia.53131

[12] Sitan Chen, Jerry Li, Brice Huang, and Allen Liu. Tight bounds for quantum state certification with incoherent measurements. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 1205–1213. IEEE, 2022. 10.1109/​FOCS54457.2022.00118.
https:/​/​doi.org/​10.1109/​FOCS54457.2022.00118

[13] Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li. The complexity of nisq. Nature Communications, 14 (1): 6001, 2023. 10.1038/​s41467-023-41217-6.
https:/​/​doi.org/​10.1038/​s41467-023-41217-6

[14] J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland. Realization of quantum error correction. Nature, 432 (7017): 602–605, Dec 2004. ISSN 1476-4687. 10.1038/​nature03074.
https:/​/​doi.org/​10.1038/​nature03074

[15] Isaac L. Chuang and M. A. Nielsen. Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics, 44 (11-12): 2455–2467, 1997. 10.1080/​09500349708231894.
https:/​/​doi.org/​10.1080/​09500349708231894

[16] D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. H. Zurek, T. F. Havel, and S. S. Somaroo. Experimental quantum error correction. Phys. Rev. Lett., 81: 2152–2155, Sep 1998. 10.1103/​PhysRevLett.81.2152.
https:/​/​doi.org/​10.1103/​PhysRevLett.81.2152

[17] Antonio D. Córcoles, Abhinav Kandala, Ali Javadi-Abhari, Douglas T. McClure, Andrew W. Cross, Kristan Temme, Paul D. Nation, Matthias Steffen, and Jay M. Gambetta. Challenges and opportunities of near-term quantum computing systems. Proceedings of the IEEE, 108 (8): 1338–1352, 2020. 10.1109/​JPROC.2019.2954005.
https:/​/​doi.org/​10.1109/​JPROC.2019.2954005

[18] Christoph Dankert, Richard Cleve, Joseph Emerson, and Etera Livine. Exact and approximate unitary 2-designs and their application to fidelity estimation. Phys. Rev. A, 80: 012304, Jul 2009. 10.1103/​PhysRevA.80.012304.
https:/​/​doi.org/​10.1103/​PhysRevA.80.012304

[19] Nathalie P. de Leon, Kohei M. Itoh, Dohun Kim, Karan K. Mehta, Tracy E. Northup, Hanhee Paik, B. S. Palmer, N. Samarth, Sorawis Sangtawesin, and D. W. Steuerman. Materials challenges and opportunities for quantum computing hardware. Science, 372 (6539): eabb2823, 2021. 10.1126/​science.abb2823.
https:/​/​doi.org/​10.1126/​science.abb2823

[20] Salvatore S. Elder, Christopher S. Wang, Philip Reinhold, Connor T. Hann, Kevin S. Chou, Brian J. Lester, Serge Rosenblum, Luigi Frunzio, Liang Jiang, and Robert J. Schoelkopf. High-fidelity measurement of qubits encoded in multilevel superconducting circuits. Phys. Rev. X, 10: 011001, Jan 2020. 10.1103/​PhysRevX.10.011001.
https:/​/​doi.org/​10.1103/​PhysRevX.10.011001

[21] Suguru Endo, Simon C. Benjamin, and Ying Li. Practical quantum error mitigation for near-future applications. Phys. Rev. X, 8: 031027, Jul 2018. 10.1103/​PhysRevX.8.031027.
https:/​/​doi.org/​10.1103/​PhysRevX.8.031027

[22] Daniel Gottesman. Stabilizer codes and quantum error correction. 1997. 10.48550/​ARXIV.QUANT-PH/​9705052. URL https:/​/​arxiv.org/​abs/​quant-ph/​9705052.
https:/​/​doi.org/​10.48550/​ARXIV.QUANT-PH/​9705052
arXiv:quant-ph/9705052

[23] Daniel Gottesman. Theory of fault-tolerant quantum computation. Phys. Rev. A, 57: 127–137, Jan 1998. 10.1103/​PhysRevA.57.127.
https:/​/​doi.org/​10.1103/​PhysRevA.57.127

[24] Daniel Greenbaum. Introduction to quantum gate set tomography. 2015. 10.48550/​ARXIV.1509.02921. URL https:/​/​arxiv.org/​abs/​1509.02921.
https:/​/​doi.org/​10.48550/​ARXIV.1509.02921
arXiv:1509.02921

[25] Aram W. Harrow and Ashley Montanaro. Quantum computational supremacy. Nature, 549 (7671): 203–209, Sep 2017. ISSN 1476-4687. URL https:/​/​doi.org/​10.1038/​nature23458.
https:/​/​doi.org/​10.1038/​nature23458

[26] Johannes Heinsoo, Christian Kraglund Andersen, Ants Remm, Sebastian Krinner, Theodore Walter, Yves Salathé, Simone Gasparinetti, Jean-Claude Besse, Anton Potočnik, Andreas Wallraff, and Christopher Eichler. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl., 10: 034040, Sep 2018. 10.1103/​PhysRevApplied.10.034040.
https:/​/​doi.org/​10.1103/​PhysRevApplied.10.034040

[27] J. Helsen, I. Roth, E. Onorati, A.H. Werner, and J. Eisert. General framework for randomized benchmarking. PRX Quantum, 3: 020357, Jun 2022. 10.1103/​PRXQuantum.3.020357.
https:/​/​doi.org/​10.1103/​PRXQuantum.3.020357

[28] Loïc Henriet, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys, Georges-Olivier Reymond, and Christophe Jurczak. Quantum computing with neutral atoms. Quantum, 4: 327, sep 2020. 10.22331/​q-2020-09-21-327.
https:/​/​doi.org/​10.22331/​q-2020-09-21-327

[29] Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum system from very few measurements. Nature Physics, 16 (10): 1050–1057, Oct 2020. ISSN 1745-2481. 10.1038/​s41567-020-0932-7.
https:/​/​doi.org/​10.1038/​s41567-020-0932-7

[30] Christopher Jackson and S. J. van Enk. Detecting correlated errors in state-preparation-and-measurement tomography. Phys. Rev. A, 92: 042312, Oct 2015. 10.1103/​PhysRevA.92.042312.
https:/​/​doi.org/​10.1103/​PhysRevA.92.042312

[31] Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta. Error mitigation extends the computational reach of a noisy quantum processor. Nature, 567 (7749): 491–495, Mar 2019. ISSN 1476-4687. 10.1038/​s41586-019-1040-7.
https:/​/​doi.org/​10.1038/​s41586-019-1040-7

[32] Adam C Keith, Charles H Baldwin, Scott Glancy, and Emanuel Knill. Joint quantum-state and measurement tomography with incomplete measurements. Physical Review A, 98 (4): 042318, 2018. 10.1103/​PhysRevA.98.042318.
https:/​/​doi.org/​10.1103/​PhysRevA.98.042318

[33] Adam Kinos, David Hunger, Roman Kolesov, Klaus Mølmer, Hugues de Riedmatten, Philippe Goldner, Alexandre Tallaire, Loic Morvan, Perrine Berger, Sacha Welinski, Khaled Karrai, Lars Rippe, Stefan Kröll, and Andreas Walther. Roadmap for rare-earth quantum computing. 2021. 10.48550/​ARXIV.2103.15743. URL https:/​/​arxiv.org/​abs/​2103.15743.
https:/​/​doi.org/​10.48550/​ARXIV.2103.15743
arXiv:2103.15743

[34] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland. Randomized benchmarking of quantum gates. Phys. Rev. A, 77: 012307, Jan 2008. 10.1103/​PhysRevA.77.012307.
https:/​/​doi.org/​10.1103/​PhysRevA.77.012307

[35] Emanuel Knill, Raymond Laflamme, and Lorenza Viola. Theory of quantum error correction for general noise. Phys. Rev. Lett., 84: 2525–2528, Mar 2000. 10.1103/​PhysRevLett.84.2525.
https:/​/​doi.org/​10.1103/​PhysRevLett.84.2525

[36] Dax Enshan Koh and Sabee Grewal. Classical shadows with noise. Quantum, 6: 776, 2022. 10.48550/​arXiv.2011.11580.
https:/​/​doi.org/​10.48550/​arXiv.2011.11580

[37] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien. Quantum computers. Nature, 464 (7285): 45–53, Mar 2010. ISSN 1476-4687. 10.1038/​nature08812.
https:/​/​doi.org/​10.1038/​nature08812

[38] Raymond Laflamme, Junan Lin, and Tal Mor. Algorithmic cooling for resolving state preparation and measurement errors in quantum computing. Phys. Rev. A, 106: 012439, Jul 2022. 10.1103/​PhysRevA.106.012439.
https:/​/​doi.org/​10.1103/​PhysRevA.106.012439

[39] Daniel A. Lidar and Todd A. Brun. Quantum Error Correction. Cambridge University Press, 2013. 10.1017/​CBO9781139034807.
https:/​/​doi.org/​10.1017/​CBO9781139034807

[40] Junan Lin, Brandon Buonacorsi, Raymond Laflamme, and Joel J Wallman. On the freedom in representing quantum operations. New Journal of Physics, 21 (2): 023006, feb 2019a. 10.1088/​1367-2630/​ab075a.
https:/​/​doi.org/​10.1088/​1367-2630/​ab075a

[41] Junan Lin, Brandon Buonacorsi, Raymond Laflamme, and Joel J Wallman. On the freedom in representing quantum operations. New Journal of Physics, 21 (2): 023006, 2019b. 10.1088/​1367-2630/​ab075a.
https:/​/​doi.org/​10.1088/​1367-2630/​ab075a

[42] Junan Lin, Joel J. Wallman, Ian Hincks, and Raymond Laflamme. Independent state and measurement characterization for quantum computers. Phys. Rev. Research, 3: 033285, Sep 2021. 10.1103/​PhysRevResearch.3.033285.
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.033285

[43] Easwar Magesan, J. M. Gambetta, and Joseph Emerson. Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett., 106: 180504, May 2011. 10.1103/​PhysRevLett.106.180504.
https:/​/​doi.org/​10.1103/​PhysRevLett.106.180504

[44] Easwar Magesan, Jay M. Gambetta, and Joseph Emerson. Characterizing quantum gates via randomized benchmarking. Phys. Rev. A, 85: 042311, Apr 2012. 10.1103/​PhysRevA.85.042311.
https:/​/​doi.org/​10.1103/​PhysRevA.85.042311

[45] Dmitri Maslov and Martin Roetteler. Shorter stabilizer circuits via bruhat decomposition and quantum circuit transformations. IEEE Transactions on Information Theory, 64 (7): 4729–4738, 2018. 10.1109/​TIT.2018.2825602.
https:/​/​doi.org/​10.1109/​TIT.2018.2825602

[46] Olivia Di Matteo, John Gamble, Chris Granade, Kenneth Rudinger, and Nathan Wiebe. Operational, gauge-free quantum tomography. Quantum, 4: 364, nov 2020. 10.22331/​q-2020-11-17-364.
https:/​/​doi.org/​10.22331/​q-2020-11-17-364

[47] Seth T. Merkel, Jay M. Gambetta, John A. Smolin, Stefano Poletto, Antonio D. Córcoles, Blake R. Johnson, Colm A. Ryan, and Matthias Steffen. Self-consistent quantum process tomography. Phys. Rev. A, 87: 062119, Jun 2013. 10.1103/​PhysRevA.87.062119.
https:/​/​doi.org/​10.1103/​PhysRevA.87.062119

[48] M. Mohseni, A. T. Rezakhani, and D. A. Lidar. Quantum-process tomography: Resource analysis of different strategies. Phys. Rev. A, 77: 032322, Mar 2008. 10.1103/​PhysRevA.77.032322.
https:/​/​doi.org/​10.1103/​PhysRevA.77.032322

[49] Benjamin Nachman and Michael R. Geller. Categorizing readout error correlations on near term quantum computers. 2021. 10.48550/​arXiv.2104.04607.
https:/​/​doi.org/​10.48550/​arXiv.2104.04607

[50] Paul D. Nation, Hwajung Kang, Neereja Sundaresan, and Jay M. Gambetta. Scalable mitigation of measurement errors on quantum computers. PRX Quantum, 2: 040326, Nov 2021. 10.1103/​PRXQuantum.2.040326.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.040326

[51] Erik Nielsen, John King Gamble, Kenneth Rudinger, Travis Scholten, Kevin Young, and Robin Blume-Kohout. Gate set tomography. Quantum, 5: 557, oct 2021. 10.22331/​q-2021-10-05-557.
https:/​/​doi.org/​10.22331/​q-2021-10-05-557

[52] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. 10.1017/​CBO9780511976667.
https:/​/​doi.org/​10.1017/​CBO9780511976667

[53] A. Opremcak, C. H. Liu, C. Wilen, K. Okubo, B. G. Christensen, D. Sank, T. C. White, A. Vainsencher, M. Giustina, A. Megrant, B. Burkett, B. L. T. Plourde, and R. McDermott. High-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. Phys. Rev. X, 11: 011027, Feb 2021. 10.1103/​PhysRevX.11.011027.
https:/​/​doi.org/​10.1103/​PhysRevX.11.011027

[54] Anargyros Papageorgiou and Joseph F. Traub. Measures of quantum computing speedup. Phys. Rev. A, 88: 022316, Aug 2013. 10.1103/​PhysRevA.88.022316.
https:/​/​doi.org/​10.1103/​PhysRevA.88.022316

[55] J. F. Poyatos, J. I. Cirac, and P. Zoller. Complete characterization of a quantum process: The two-bit quantum gate. Phys. Rev. Lett., 78: 390–393, Jan 1997. 10.1103/​PhysRevLett.78.390.
https:/​/​doi.org/​10.1103/​PhysRevLett.78.390

[56] John Preskill. Fault-Tolerant Quantum Computation, pages 213–269. 1998. 10.1142/​9789812385253_0008.
https:/​/​doi.org/​10.1142/​9789812385253_0008

[57] John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2: 79, aug 2018. 10.22331/​q-2018-08-06-79.
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[58] D. J. Reilly. Challenges in scaling-up the control interface of a quantum computer. In 2019 IEEE International Electron Devices Meeting (IEDM), pages 31.7.1–31.7.6, 2019. 10.1109/​IEDM19573.2019.8993497.
https:/​/​doi.org/​10.1109/​IEDM19573.2019.8993497

[59] Joschka Roffe. Quantum error correction: an introductory guide. Contemporary Physics, 60 (3): 226–245, 2019. 10.1080/​00107514.2019.1667078.
https:/​/​doi.org/​10.1080/​00107514.2019.1667078

[60] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P. Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti, N. C. Brown, T. M. Gatterman, S. K. Halit, K. Gilmore, J. A. Gerber, B. Neyenhuis, D. Hayes, and R. P. Stutz. Realization of real-time fault-tolerant quantum error correction. Phys. Rev. X, 11: 041058, Dec 2021. 10.1103/​PhysRevX.11.041058.
https:/​/​doi.org/​10.1103/​PhysRevX.11.041058

[61] M Saffman. Quantum computing with atomic qubits and rydberg interactions: progress and challenges. Journal of Physics B: Atomic, Molecular and Optical Physics, 49 (20): 202001, oct 2016. 10.1088/​0953-4075/​49/​20/​202001.
https:/​/​doi.org/​10.1088/​0953-4075/​49/​20/​202001

[62] P. Shor. Fault-tolerant quantum computation. In 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, page 56, Los Alamitos, CA, USA, oct 1996. IEEE Computer Society. 10.1109/​SFCS.1996.548464.
https:/​/​doi.org/​10.1109/​SFCS.1996.548464

[63] Sergei Slussarenko and Geoff J. Pryde. Photonic quantum information processing: A concise review. Applied Physics Reviews, 6 (4): 041303, 2019. 10.1063/​1.5115814.
https:/​/​doi.org/​10.1063/​1.5115814

[64] Ryuji Takagi, Suguru Endo, Shintaro Minagawa, and Mile Gu. Fundamental limits of quantum error mitigation. npj Quantum Information, 8 (1): 114, Sep 2022. ISSN 2056-6387. 10.1038/​s41534-022-00618-z.
https:/​/​doi.org/​10.1038/​s41534-022-00618-z

[65] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett., 119: 180509, Nov 2017. 10.1103/​PhysRevLett.119.180509.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.180509

[66] Ewout van den Berg, Zlatko K. Minev, and Kristan Temme. Model-free readout-error mitigation for quantum expectation values. Phys. Rev. A, 105: 032620, Mar 2022. 10.1103/​PhysRevA.105.032620.
https:/​/​doi.org/​10.1103/​PhysRevA.105.032620

[67] Lieven Vandersypen and Antoni van Leeuwenhoek. 1.4 quantum computing - the next challenge in circuit and system design. In 2017 IEEE International Solid-State Circuits Conference (ISSCC), pages 24–29, 2017. 10.1109/​ISSCC.2017.7870244.
https:/​/​doi.org/​10.1109/​ISSCC.2017.7870244

[68] Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2018. 10.1017/​9781108231596.
https:/​/​doi.org/​10.1017/​9781108231596

[69] A. Wehrl. The many facets of entropy. Reports on Mathematical Physics, 30 (1): 119–129, 1991. ISSN 0034-4877. 10.1016/​0034-4877(91)90045-O.
https:/​/​doi.org/​10.1016/​0034-4877(91)90045-O

[70] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak, J.-S. Chen, N. C. Pisenti, M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi, J. D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon, M. Williams, A. M. Ducore, A. Blinov, S. M. Kreikemeier, V. Chaplin, M. Keesan, C. Monroe, and J. Kim. Benchmarking an 11-qubit quantum computer. Nature Communications, 10 (1): 5464, Nov 2019. ISSN 2041-1723. 10.1038/​s41467-019-13534-2.
https:/​/​doi.org/​10.1038/​s41467-019-13534-2

[71] Man-Hong Yung. Quantum supremacy: some fundamental concepts. National Science Review, 6 (1): 22–23, 07 2018. ISSN 2095-5138. 10.1093/​nsr/​nwy072.
https:/​/​doi.org/​10.1093/​nsr/​nwy072

Cited by

[1] Sangwoo Park and Osvaldo Simeone, "Quantum Conformal Prediction for Reliable Uncertainty Quantification in Quantum Machine Learning", arXiv:2304.03398, (2023).

[2] Mengru Ma and Jiangwei Shang, "Corrupted sensing quantum state tomography", arXiv:2405.14396, (2024).

The above citations are from SAO/NASA ADS (last updated successfully 2024-09-16 15:31:12). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-09-16 15:31:10).