Bayesian Optimization for Robust State Preparation in Quantum Many-Body Systems

Tizian Blatz1,2, Joyce Kwan3, Julian Léonard4, and Annabelle Bohrdt2,5

1Department of Physics and Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, Munich D-80333, Germany
2Munich Center for Quantum Science and Technology (MCQST), Munich D-80799, Germany
3Department of Physics, Harvard University, Cambridge, MA 02138, USA
4Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Vienna 1020, Austria
5Institute of Theoretical Physics, University of Regensburg, Regensburg D-93053, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

New generations of ultracold-atom experiments are continually raising the demand for efficient solutions to optimal control problems. Here, we apply Bayesian optimization to improve a state-preparation protocol recently implemented in an ultracold-atom system to realize a two-particle fractional quantum Hall state. Compared to manual ramp design, we demonstrate the superior performance of our optimization approach in a numerical simulation – resulting in a protocol that is 10x faster at the same fidelity, even when taking into account experimentally realistic levels of disorder in the system. We extensively analyze and discuss questions of robustness and the relationship between numerical simulation and experimental realization, and how to make the best use of the surrogate model trained during optimization. We find that numerical simulation can be expected to substantially reduce the number of experiments that need to be performed with even the most basic transfer learning techniques. The proposed protocol and workflow will pave the way toward the realization of more complex many-body quantum states in experiments.

In our work, we improve state preparation in quantum simulators by using machine learning and computer simulation. The quantum simulation experiments we investigate are setups that offer high levels of control over a few to hundreds of atoms and allow probing the phenomena of quantum mechanics. Today, one of the biggest challenges in these setups is to prepare specific target states with interesting properties. To achieve state preparation in an efficient and robust way, we apply Bayesian optimization to a numerical simulation of an experiment. We find that our method is highly capable of controlling the system and we develop a general strategy to make experiments more efficient through simulation.

The optimized solution can create the target state 10 times faster than what has been done in the experiment. It does so without sacrificing preparation fidelity and we show it to be remarkably robust to the disorder expected in an experimental system. Additionally, we demonstrate that the optimization results obtained in a simulation can directly be used in or transferred to an experiment in a simple and straightforward way.
Therefore, our novel optimization strategy can significantly expand the range of states experiments have access to and can reduce the time in the lab it takes to find them.

► BibTeX data

► References

[1] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbène. ``Quantum simulations with ultracold quantum gases''. Nature Physics 8, 267–276 (2012).
https:/​/​doi.org/​10.1038/​nphys2259

[2] Christian Gross and Immanuel Bloch. ``Quantum simulations with ultracold atoms in optical lattices''. Science 357, 995–1001 (2017).
https:/​/​doi.org/​10.1126/​science.aal3837

[3] Martin Eckstein and Marcus Kollar. ``Near-adiabatic parameter changes in correlated systems: Influence of the ramp protocol on the excitation energy''. New Journal of Physics 12, 055012 (2010).
https:/​/​doi.org/​10.1088/​1367-2630/​12/​5/​055012

[4] Julian Léonard, Sooshin Kim, Joyce Kwan, Perrin Segura, Fabian Grusdt, Cécile Repellin, Nathan Goldman, and Markus Greiner. ``Realization of a fractional quantum Hall state with ultracold atoms''. Nature 619, 495–499 (2023).
https:/​/​doi.org/​10.1038/​s41586-023-06122-4

[5] Patrick Doria, Tommaso Calarco, and Simone Montangero. ``Optimal Control Technique for Many-Body Quantum Dynamics''. Physical Review Letters 106, 190501 (2011).
https:/​/​doi.org/​10.1103/​PhysRevLett.106.190501

[6] Steffen J. Glaser, Ugo Boscain, Tommaso Calarco, Christiane P. Koch, Walter Köckenberger, Ronnie Kosloff, Ilya Kuprov, Burkhard Luy, Sophie Schirmer, Thomas Schulte-Herbrüggen, Dominique Sugny, and Frank K. Wilhelm. ``Training Schrödinger's cat: Quantum optimal control''. The European Physical Journal D 69, 279 (2015).
https:/​/​doi.org/​10.1140/​epjd/​e2015-60464-1

[7] Christiane P. Koch. ``Controlling open quantum systems: Tools, achievements, and limitations''. Journal of Physics: Condensed Matter 28, 213001 (2016).
https:/​/​doi.org/​10.1088/​0953-8984/​28/​21/​213001

[8] Christiane P. Koch, Ugo Boscain, Tommaso Calarco, Gunther Dirr, Stefan Filipp, Steffen J. Glaser, Ronnie Kosloff, Simone Montangero, Thomas Schulte-Herbrüggen, Dominique Sugny, and Frank K. Wilhelm. ``Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe''. EPJ Quantum Technology 9, 1–60 (2022).
https:/​/​doi.org/​10.1140/​epjqt/​s40507-022-00138-x

[9] Jonathan Simon, Waseem S. Bakr, Ruichao Ma, M. Eric Tai, Philipp M. Preiss, and Markus Greiner. ``Quantum simulation of antiferromagnetic spin chains in an optical lattice''. Nature 472, 307–312 (2011).
https:/​/​doi.org/​10.1038/​nature09994

[10] S. van Frank, M. Bonneau, J. Schmiedmayer, S. Hild, C. Gross, M. Cheneau, I. Bloch, T. Pichler, A. Negretti, T. Calarco, and S. Montangero. ``Optimal control of complex atomic quantum systems''. Scientific Reports 6, 34187 (2016).
https:/​/​doi.org/​10.1038/​srep34187

[11] Sylvain de Léséleuc, Vincent Lienhard, Pascal Scholl, Daniel Barredo, Sebastian Weber, Nicolai Lang, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. ``Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms''. Science 365, 775–780 (2019).
https:/​/​doi.org/​10.1126/​science.aav9105

[12] Murphy Yuezhen Niu, Sergio Boixo, Vadim N. Smelyanskiy, and Hartmut Neven. ``Universal quantum control through deep reinforcement learning''. npj Quantum Information 5, 1–8 (2019).
https:/​/​doi.org/​10.1038/​s41534-019-0141-3

[13] Iris Paparelle, Lorenzo Moro, and Enrico Prati. ``Digitally stimulated Raman passage by deep reinforcement learning''. Physics Letters A 384, 126266 (2020).
https:/​/​doi.org/​10.1016/​j.physleta.2020.126266

[14] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. ``Taking the Human Out of the Loop: A Review of Bayesian Optimization''. Proceedings of the IEEE 104, 148–175 (2016).
https:/​/​doi.org/​10.1109/​JPROC.2015.2494218

[15] Roman Garnett. ``Bayesian Optimization''. Cambridge University Press. Cambridge (2023).
https:/​/​doi.org/​10.1017/​9781108348973

[16] P. B. Wigley, P. J. Everitt, A. van den Hengel, J. W. Bastian, M. A. Sooriyabandara, G. D. McDonald, K. S. Hardman, C. D. Quinlivan, P. Manju, C. C. N. Kuhn, I. R. Petersen, A. N. Luiten, J. J. Hope, N. P. Robins, and M. R. Hush. ``Fast machine-learning online optimization of ultra-cold-atom experiments''. Scientific Reports 6, 25890 (2016).
https:/​/​doi.org/​10.1038/​srep25890

[17] Zachary Vendeiro, Joshua Ramette, Alyssa Rudelis, Michelle Chong, Josiah Sinclair, Luke Stewart, Alban Urvoy, and Vladan Vuletić. ``Machine-learning-accelerated Bose-Einstein condensation''. Physical Review Research 4, 043216 (2022).
https:/​/​doi.org/​10.1103/​PhysRevResearch.4.043216

[18] A. D. Tranter, H. J. Slatyer, M. R. Hush, A. C. Leung, J. L. Everett, K. V. Paul, P. Vernaz-Gris, P. K. Lam, B. C. Buchler, and G. T. Campbell. ``Multiparameter optimisation of a magneto-optical trap using deep learning''. Nature Communications 9, 4360 (2018).
https:/​/​doi.org/​10.1038/​s41467-018-06847-1

[19] Rick Mukherjee, Harry Xie, and Florian Mintert. ``Bayesian optimal control of GHZ states in Rydberg lattices''. Physical Review Letters 125, 203603 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.203603

[20] Yan-Jun Xie, Han-Ning Dai, Zhen-Sheng Yuan, Youjin Deng, Xiaopeng Li, Yu-Ao Chen, and Jian-Wei Pan. ``Bayesian learning for optimal control of quantum many-body states in optical lattices''. Physical Review A 106, 013316 (2022).
https:/​/​doi.org/​10.1103/​PhysRevA.106.013316

[21] Jeffrey C. Lagarias, James A. Reeds, Margaret H. Wright, and Paul E. Wright. ``Convergence Properties of the Nelder–Mead Simplex Method in Low Dimensions''. SIAM Journal on Optimization 9, 112–147 (1998).
https:/​/​doi.org/​10.1137/​S1052623496303470

[22] Swagatam Das and Ponnuthurai Nagaratnam Suganthan. ``Differential Evolution: A Survey of the State-of-the-Art''. IEEE Transactions on Evolutionary Computation 15, 4–31 (2011).
https:/​/​doi.org/​10.1109/​TEVC.2010.2059031

[23] R. B. Laughlin. ``Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations''. Physical Review Letters 50, 1395–1398 (1983).
https:/​/​doi.org/​10.1103/​PhysRevLett.50.1395

[24] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T. Senthil. ``Quantum spin liquids''. Science 367, eaay0668 (2020).
https:/​/​doi.org/​10.1126/​science.aay0668

[25] Anton Mazurenko, Christie S. Chiu, Geoffrey Ji, Maxwell F. Parsons, Márton Kanász-Nagy, Richard Schmidt, Fabian Grusdt, Eugene Demler, Daniel Greif, and Markus Greiner. ``A cold-atom Fermi–Hubbard antiferromagnet''. Nature 545, 462–466 (2017).
https:/​/​doi.org/​10.1038/​nature22362

[26] Christie S. Chiu, Geoffrey Ji, Anton Mazurenko, Daniel Greif, and Markus Greiner. ``Quantum State Engineering of a Hubbard System with Ultracold Fermions''. Physical Review Letters 120, 243201 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.120.243201

[27] S. Rosi, A. Bernard, N. Fabbri, L. Fallani, C. Fort, M. Inguscio, T. Calarco, and S. Montangero. ``Fast closed-loop optimal control of ultracold atoms in an optical lattice''. Physical Review A 88, 021601 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.021601

[28] J. J. Sørensen, J. H. M. Jensen, T. Heinzel, and J. F. Sherson. ``QEngine: A C++ library for quantum optimal control of ultracold atoms''. Computer Physics Communications 243, 135–150 (2019).
https:/​/​doi.org/​10.1016/​j.cpc.2019.04.020

[29] Carl Edward Rasmussen and Christopher K. I. Williams. ``Gaussian Processes for Machine Learning''. The MIT Press. (2005).
https:/​/​doi.org/​10.7551/​mitpress/​3206.001.0001

[30] M. Eric Tai, Alexander Lukin, Matthew Rispoli, Robert Schittko, Tim Menke, Dan Borgnia, Philipp M. Preiss, Fabian Grusdt, Adam M. Kaufman, and Markus Greiner. ``Microscopy of the interacting Harper–Hofstadter model in the two-body limit''. Nature 546, 519–523 (2017).
https:/​/​doi.org/​10.1038/​nature22811

[31] P. G. Harper. ``The General Motion of Conduction Electrons in a Uniform Magnetic Field, with Application to the Diamagnetism of Metals''. Proceedings of the Physical Society. Section A 68, 879 (1955).
https:/​/​doi.org/​10.1088/​0370-1298/​68/​10/​305

[32] Douglas R. Hofstadter. ``Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields''. Physical Review B 14, 2239–2249 (1976).
https:/​/​doi.org/​10.1103/​PhysRevB.14.2239

[33] Christoph Sträter and André Eckardt. ``Interband Heating Processes in a Periodically Driven Optical Lattice''. Zeitschrift für Naturforschung A 71, 909–920 (2016).
https:/​/​doi.org/​10.1515/​zna-2016-0129

[34] Rick Mukherjee, Frédéric Sauvage, Harry Xie, Robert Löw, and Florian Mintert. ``Preparation of ordered states in ultra-cold gases using Bayesian optimization''. New Journal of Physics 22, 075001 (2020).
https:/​/​doi.org/​10.1088/​1367-2630/​ab8677

[35] P. Schauß, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macrì, T. Pohl, I. Bloch, and C. Gross. ``Crystallization in Ising quantum magnets''. Science 347, 1455–1458 (2015).
https:/​/​doi.org/​10.1126/​science.1258351

[36] F. A. Palm, M. Buser, J. Léonard, M. Aidelsburger, U. Schollwöck, and F. Grusdt. ``Bosonic Pfaffian state in the Hofstadter-Bose-Hubbard model''. Physical Review B 103, L161101 (2021).
https:/​/​doi.org/​10.1103/​PhysRevB.103.L161101

[37] F. A. Palm, J. Kwan, B. Bakkali-Hassani, M. Greiner, U. Schollwöck, N. Goldman, and F. Grusdt. ``Growing extended Laughlin states in a quantum gas microscope: A patchwork construction''. Physical Review Research 6, 013198 (2024).
https:/​/​doi.org/​10.1103/​PhysRevResearch.6.013198

[38] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. ``Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design''. IEEE Transactions on Information Theory 58, 3250–3265 (2012).
https:/​/​doi.org/​10.1109/​TIT.2011.2182033

[39] J. M. Zhang and R. X. Dong. ``Exact diagonalization: The Bose–Hubbard model as an example''. European Journal of Physics 31, 591 (2010).
https:/​/​doi.org/​10.1088/​0143-0807/​31/​3/​016

[40] J. R. Dormand and P. J. Prince. ``A family of embedded Runge-Kutta formulae''. Journal of Computational and Applied Mathematics 6, 19–26 (1980).
https:/​/​doi.org/​10.1016/​0771-050X(80)90013-3

[41] Philip Zupancic, Philipp M. Preiss, Ruichao Ma, Alexander Lukin, M. Eric Tai, Matthew Rispoli, Rajibul Islam, and Markus Greiner. ``Ultra-precise holographic beam shaping for microscopic quantum control''. Optics Express 24, 13881–13893 (2016).
https:/​/​doi.org/​10.1364/​OE.24.013881

Cited by

[1] F. A. Palm, J. Kwan, B. Bakkali-Hassani, M. Greiner, U. Schollwöck, N. Goldman, and F. Grusdt, "Growing extended Laughlin states in a quantum gas microscope: A patchwork construction", Physical Review Research 6 1, 013198 (2024).

The above citations are from SAO/NASA ADS (last updated successfully 2024-07-01 12:21:50). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-07-01 12:21:48).