Trading T gates for dirty qubits in state preparation and unitary synthesis

Guang Hao Low1,2, Vadym Kliuchnikov1,2, and Luke Schaeffer1,3,4

1Quantum Architectures and Computation, Microsoft Research, Washington, Redmond, USA
2Azure Quantum, Microsoft, Washington, Redmond, USA
3Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
4Joint Center for Quantum Information and Computer Science, University of Maryland, Maryland, College Park, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Efficient synthesis of arbitrary quantum states and unitaries from a universal fault-tolerant gate-set e.g. Clifford+T is a key subroutine in quantum computation. As large quantum algorithms feature many qubits that encode coherent quantum information but remain idle for parts of the computation, these should be used if it minimizes overall gate counts, especially that of the expensive T-gates. We present a quantum algorithm for preparing any dimension-$N$ pure quantum state specified by a list of $N$ classical numbers, that realizes a trade-off between space and T-gates. Our scheme uses $\mathcal{O}(\log{(N/\epsilon)})$ clean qubits and a tunable number of $\sim(\lambda\log{(\frac{\log{N}}{\epsilon})})$ dirty qubits, to reduce the T-gate cost to $\mathcal{O}(\frac{N}{\lambda}+\lambda\log{\frac{N}{\epsilon}}\log{\frac{\log{N}}{\epsilon}})$. This trade-off is optimal up to logarithmic factors, proven through an unconditional gate counting lower bound, and is, in the best case, a quadratic improvement in T-count over prior ancillary-free approaches. We prove similar statements for unitary synthesis by reduction to state preparation. Underlying our constructions is a T-efficient circuit implementation of a quantum oracle for arbitrary classical data.

TQC 2019

The dominant cost in many quantum algorithms that compute on classical data is the number of queries made to so-called quantum oracles encoding the data. Minimizing the cost of the quantum circuits implementing such oracles is hence of great interest.

Often, interesting computations require a very large number of queries on a very large amount of classical data. Such large computations necessitate fault-tolerant quantum computation on logical qubits, which have a cost model where Clifford gates are cheap but non-Clifford gates are expensive. In contrast, physical qubits typically have a cost model with cheap single-qubit non-Clifford gates but expensive two-qubit Clifford gates.

Motivated by the constraints of fault-tolerant quantum computation, we present a family of quantum circuits that realize arbitrary quantum oracles with the fewest number of non-Clifford gates, up to an optimal square-root factor improvement over prior art. This work enables more accurate costing of quantum algorithms in the fault-tolerant regime.

► BibTeX data

► References

[1] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. ``Quantum principal component analysis''. Nature Physics 10, 631–633 (2014).
https:/​/​doi.org/​10.1038/​nphys3029

[2] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. ``Simulating Hamiltonian dynamics with a truncated Taylor series''. Physical Review Letters 114, 090502 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.114.090502

[3] Guang Hao Low and Isaac L. Chuang. ``Optimal Hamiltonian simulation by quantum signal processing''. Physical Review Letters 118, 010501 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.010501

[4] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. ``Quantum algorithm for linear systems of equations''. Physical Review Letters 103, 150502 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.103.150502

[5] Chunhao Wang and Leonard Wossnig. ``A quantum algorithm for simulating non-sparse Hamiltonians''. Quantum Information & Computation 20, 597–615 (2020).
https:/​/​doi.org/​10.26421/​QIC20.7-8-5

[6] Nathan Wiebe, Daniel Braun, and Seth Lloyd. ``Quantum algorithm for data fitting''. Physical Review Letters 109, 050505 (2012).
https:/​/​doi.org/​10.1103/​PhysRevLett.109.050505

[7] Dorit Aharonov and Amnon Ta-Shma. ``Adiabatic quantum state generation and statistical zero knowledge''. Proceedings of the thirty-fifth ACM symposium on Theory of computingPage 20 (2003).
https:/​/​doi.org/​10.1145/​780542.780546

[8] Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven. ``Encoding electronic spectra in quantum circuits with linear T complexity''. Physical Review X 8, 041015 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.041015

[9] Michael A. Nielsen and Isaac L. Chuang. ``Quantum computation and quantum information''. Cambridge University Press. (2010). 10th anniversary edition.
https:/​/​doi.org/​10.1017/​CBO9780511976667

[10] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. ``Fast and efficient exact synthesis of single-qubit unitaries generated by Clifford and T gates''. Quantum Information & Computation 13, 607–630 (2013).
https:/​/​doi.org/​10.26421/​QIC13.7-8-4

[11] Neil J Ross and Peter Selinger. ``Optimal ancilla-free Clifford+T approximation of Z-rotations''. Quantum Information & Computation 16, 901–953 (2016).
https:/​/​doi.org/​10.26421/​QIC16.11-12-1

[12] V. V. Shende, S. S. Bullock, and I. L. Markov. ``Synthesis of quantum-logic circuits''. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 1000–1010 (2006).
https:/​/​doi.org/​10.1109/​TCAD.2005.855930

[13] Aram W. Harrow, Benjamin Recht, and Isaac L. Chuang. ``Efficient discrete approximations of quantum gates''. Journal of Mathematical Physics 43, 4445–4451 (2002).
https:/​/​doi.org/​10.1063/​1.1495899

[14] Daniel Litinski. ``A game of surface codes: large-scale quantum computing with lattice surgery''. Quantum 3, 128 (2019).
https:/​/​doi.org/​10.22331/​q-2019-03-05-128

[15] Xiaoming Sun, Guojing Tian, Shuai Yang, Pei Yuan, and Shengyu Zhang. ``Asymptotically optimal circuit depth for quantum state preparation and general unitary synthesis''. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 42, 3301–3314 (2023).
https:/​/​doi.org/​10.1109/​TCAD.2023.3244885

[16] Guang Hao Low and Isaac L. Chuang. ``Hamiltonian simulation by qubitization''. Quantum 3, 163 (2019).
https:/​/​doi.org/​10.22331/​q-2019-07-12-163

[17] Guang Hao Low and Isaac L. Chuang. ``Hamiltonian simulation by uniform spectral amplification'' (2017). arXiv:1707.05391.
arXiv:1707.05391

[18] Scott Aaronson. ``The complexity of quantum states and transformations: From quantum money to black holes'' (2016). arXiv:1607.05256.
arXiv:1607.05256

[19] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. ``Elementary gates for quantum computation''. Physical Review A 52, 3457–3467 (1995).
https:/​/​doi.org/​10.1103/​PhysRevA.52.3457

[20] Andrew M. Childs, Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su. ``Toward the first quantum simulation with quantum speedup''. Proceedings of the National Academy of Sciences 115, 9456–9461 (2018).
https:/​/​doi.org/​10.1073/​pnas.1801723115

[21] Lov Grover and Terry Rudolph. ``Creating superpositions that correspond to efficiently integrable probability distributions'' (2002). arXiv:quant-ph/​0208112.
arXiv:quant-ph/0208112

[22] Craig Gidney. ``Halving the cost of quantum addition''. Quantum 2, 74 (2018).
https:/​/​doi.org/​10.22331/​q-2018-06-18-74

[23] Guang Hao Low. ``Halving the cost of quantum multiplexed rotations'' (2021). arXiv:2110.13439.
arXiv:2110.13439

[24] Alston S. Householder. ``Unitary triangularization of a nonsymmetric matrix''. Journal of the ACM 5, 339–342 (1958).
https:/​/​doi.org/​10.1145/​320941.320947

[25] Vadym Kliuchnikov. ``Synthesis of unitaries with Clifford+T circuits'' (2013). arXiv:1306.3200.
arXiv:1306.3200

[26] David Gosset, Vadym Kliuchnikov, Michele Mosca, and Vincent Russo. ``An algorithm for the T-count''. Quantum Information & Computation 14, 1261–1276 (2014).
https:/​/​doi.org/​10.26421/​QIC14.15-16-1

[27] Caterina E. Mora and Hans J. Briegel. ``Algorithmic complexity and entanglement of quantum states''. Physical Review Letters 95, 200503 (2005).
https:/​/​doi.org/​10.1103/​PhysRevLett.95.200503

[28] E. Knill. ``Approximation by quantum circuits'' (1995). arXiv:quant-ph/​9508006.
arXiv:quant-ph/9508006

[29] Michael Beverland, Earl Campbell, Mark Howard, and Vadym Kliuchnikov. ``Lower bounds on the non-clifford resources for quantum computations''. Quantum Science and Technology 5, 035009 (2020).
https:/​/​doi.org/​10.1088/​2058-9565/​ab8963

[30] Olivia Di Matteo, Vlad Gheorghiu, and Michele Mosca. ``Fault-tolerant resource estimation of quantum random-access memories''. IEEE Transactions on Quantum Engineering 1, 1–13 (2020).
https:/​/​doi.org/​10.1109/​TQE.2020.2965803

[31] Thomas Häner, Vadym Kliuchnikov, Martin Roetteler, and Mathias Soeken. ``Space-time optimized table lookup'' (2022). arXiv:2211.01133.
arXiv:2211.01133

[32] Kaiwen Gui, Alexander M. Dalzell, Alessandro Achille, Martin Suchara, and Frederic T. Chong. ``Spacetime-efficient low-depth quantum state preparation with applications''. Quantum 8, 1257 (2024).
https:/​/​doi.org/​10.22331/​q-2024-02-15-1257

[33] Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. ``The power of block-encoded matrix powers: Improved regression techniques via faster Hamiltonian simulation''. 46th International Colloquium on Automata, Languages, and Programming 132, 33:1–33:14 (2019).
https:/​/​doi.org/​10.4230/​LIPIcs.ICALP.2019.33

[34] B. David Clader, Alexander M. Dalzell, Nikitas Stamatopoulos, Grant Salton, Mario Berta, and William J. Zeng. ``Quantum resources required to block-encode a matrix of classical data''. IEEE Transactions on Quantum Engineering 3, 1–23 (2022).
https:/​/​doi.org/​10.1109/​TQE.2022.3231194

[35] Connor T. Hann, Gideon Lee, S.M. Girvin, and Liang Jiang. ``Resilience of quantum random access memory to generic noise''. PRX Quantum 2, 020311 (2021).
https:/​/​doi.org/​10.1103/​PRXQuantum.2.020311

[36] Dominic W. Berry, Craig Gidney, Mario Motta, Jarrod R. McClean, and Ryan Babbush. ``Qubitization of arbitrary basis quantum chemistry leveraging sparsity and low rank factorization''. Quantum 3, 208 (2019).
https:/​/​doi.org/​10.22331/​q-2019-12-02-208

[37] Vera von Burg, Guang Hao Low, Thomas Häner, Damian S. Steiger, Markus Reiher, Martin Roetteler, and Matthias Troyer. ``Quantum computing enhanced computational catalysis''. Physical Review Research 3, 033055 (2021).
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.033055

[38] Joonho Lee, Dominic W. Berry, Craig Gidney, William J. Huggins, Jarrod R. McClean, Nathan Wiebe, and Ryan Babbush. ``Even more efficient quantum computations of chemistry through tensor hypercontraction''. PRX Quantum 2, 030305 (2021).
https:/​/​doi.org/​10.1103/​PRXQuantum.2.030305

[39] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan. ``Quantum algorithms for quantum chemistry and quantum materials science''. Chemical Reviews 120, 12685–12717 (2020).
https:/​/​doi.org/​10.1021/​acs.chemrev.9b00829

[40] Yuval R. Sanders, Dominic W. Berry, Pedro C.S. Costa, Louis W. Tessler, Nathan Wiebe, Craig Gidney, Hartmut Neven, and Ryan Babbush. ``Compilation of fault-tolerant quantum heuristics for combinatorial optimization''. PRX Quantum 1, 020312 (2020).
https:/​/​doi.org/​10.1103/​PRXQuantum.1.020312

[41] Steven A Cuccaro, Thomas G Draper, Samuel A Kutin, and David Petrie Moulton. ``A new quantum ripple-carry addition circuit'' (2004). arXiv:quant-ph/​0410184.
arXiv:quant-ph/0410184

[42] Thomas Häner, Martin Roetteler, and Krysta M Svore. ``Factoring using 2n + 2 qubits with Toffoli based modular multiplication''. Quantum Information & Computation 17, 673–684 (2017).
https:/​/​doi.org/​10.26421/​QIC17.7-8-7

[43] Vadym Kliuchnikov, Dmitri Maslov, and Michele Mosca. ``Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits''. Physical Review Letters 110, 190502 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.110.190502

Cited by

[1] YaoChong Li, Ri-Gui Zhou, RuQing Xu, Jia Luo, and WenWen Hu, "A quantum deep convolutional neural network for image recognition", Quantum Science and Technology 5 4, 044003 (2020).

[2] Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang Chen, András Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabiboulline, Aleksander Kubica, Grant Salton, Samson Wang, and Fernando G. S. L. Brandão, "Quantum algorithms: A survey of applications and end-to-end complexities", arXiv:2310.03011, (2023).

[3] Bettina Heim, Mathias Soeken, Sarah Marshall, Chris Granade, Martin Roetteler, Alan Geller, Matthias Troyer, and Krysta Svore, "Quantum programming languages", Nature Reviews Physics 2 12, 709 (2020).

[4] Koichi Miyamoto, Soichiro Yamazaki, Fumio Uchida, Kotaro Fujisawa, and Naoki Yoshida, "Quantum algorithm for the Vlasov simulation of the large-scale structure formation with massive neutrinos", Physical Review Research 6 1, 013200 (2024).

[5] Vera von Burg, Guang Hao Low, Thomas Häner, Damian S. Steiger, Markus Reiher, Martin Roetteler, and Matthias Troyer, "Quantum computing enhanced computational catalysis", Physical Review Research 3 3, 033055 (2021).

[6] Joonho Lee, Dominic W. Berry, Craig Gidney, William J. Huggins, Jarrod R. McClean, Nathan Wiebe, and Ryan Babbush, "Even More Efficient Quantum Computations of Chemistry Through Tensor Hypercontraction", PRX Quantum 2 3, 030305 (2021).

[7] Dominic W. Berry, Craig Gidney, Mario Motta, Jarrod R. McClean, and Ryan Babbush, "Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization", Quantum 3, 208 (2019).

[8] Ryan Babbush, Dominic W. Berry, Jarrod R. McClean, and Hartmut Neven, "Quantum simulation of chemistry with sublinear scaling in basis size", npj Quantum Information 5, 92 (2019).

[9] Hector Bombin, Isaac H. Kim, Daniel Litinski, Naomi Nickerson, Mihir Pant, Fernando Pastawski, Sam Roberts, and Terry Rudolph, "Interleaving: Modular architectures for fault-tolerant photonic quantum computing", arXiv:2103.08612, (2021).

[10] Modjtaba Shokrian Zini, Alain Delgado, Roberto dos Reis, Pablo Antonio Moreno Casares, Jonathan E. Mueller, Arne-Christian Voigt, and Juan Miguel Arrazola, "Quantum simulation of battery materials using ionic pseudopotentials", Quantum 7, 1049 (2023).

[11] Nicholas P. Bauman, Eric J. Bylaska, Sriram Krishnamoorthy, Guang Hao Low, Nathan Wiebe, Christopher E. Granade, Martin Roetteler, Matthias Troyer, and Karol Kowalski, "Downfolding of many-body Hamiltonians using active-space models: Extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms", Journal of Chemical Physics 151 1, 014107 (2019).

[12] Yuan Su, Dominic W. Berry, Nathan Wiebe, Nicholas Rubin, and Ryan Babbush, "Fault-Tolerant Quantum Simulations of Chemistry in First Quantization", PRX Quantum 2 4, 040332 (2021).

[13] Xiao-Ming Zhang, Tongyang Li, and Xiao Yuan, "Quantum State Preparation with Optimal Circuit Depth: Implementations and Applications", Physical Review Letters 129 23, 230504 (2022).

[14] Guang Hao Low, Yuan Su, Yu Tong, and Minh C. Tran, "On the complexity of implementing Trotter steps", arXiv:2211.09133, (2022).

[15] Annie Y. Wei, Preksha Naik, Aram W. Harrow, and Jesse Thaler, "Quantum algorithms for jet clustering", Physical Review D 101 9, 094015 (2020).

[16] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan, "Quantum algorithms for quantum chemistry and quantum materials science", arXiv:2001.03685, (2020).

[17] Jessica Lemieux, Matteo Lostaglio, Sam Pallister, William Pol, Karthik Seetharam, Sukin Sim, and Burak Şahinoğlu, "Quantum sampling algorithms for quantum state preparation and matrix block-encoding", arXiv:2405.11436, (2024).

[18] Daniel Marti-Dafcik, Hugh G. A. Burton, and David P. Tew, "Spin coupling is all you need: Encoding strong electron correlation on quantum computers", arXiv:2404.18878, (2024).

[19] Isaac H. Kim, Ye-Hua Liu, Sam Pallister, William Pol, Sam Roberts, and Eunseok Lee, "Fault-tolerant resource estimate for quantum chemical simulations: Case study on Li-ion battery electrolyte molecules", Physical Review Research 4 2, 023019 (2022).

[20] R. Au-Yeung, B. Camino, O. Rathore, and V. Kendon, "Quantum algorithms for scientific computing", arXiv:2312.14904, (2023).

[21] Christoph Sünderhauf, Earl Campbell, and Joan Camps, "Block-encoding structured matrices for data input in quantum computing", Quantum 8, 1226 (2024).

[22] Kianna Wan, Mario Berta, and Earl T. Campbell, "Randomized Quantum Algorithm for Statistical Phase Estimation", Physical Review Letters 129 3, 030503 (2022).

[23] Alain Delgado, Pablo A. M. Casares, Roberto dos Reis, Modjtaba Shokrian Zini, Roberto Campos, Norge Cruz-Hernández, Arne-Christian Voigt, Angus Lowe, Soran Jahangiri, M. A. Martin-Delgado, Jonathan E. Mueller, and Juan Miguel Arrazola, "Simulating key properties of lithium-ion batteries with a fault-tolerant quantum computer", Physical Review A 106 3, 032428 (2022).

[24] Xiaoming Sun, Guojing Tian, Shuai Yang, Pei Yuan, and Shengyu Zhang, "Asymptotically Optimal Circuit Depth for Quantum State Preparation and General Unitary Synthesis", arXiv:2108.06150, (2021).

[25] Pablo Antonio Moreno Casares, "Fault-tolerant quantum algorithms", arXiv:2301.08057, (2023).

[26] Francisco J. R. Ruiz, Tuomas Laakkonen, Johannes Bausch, Matej Balog, Mohammadamin Barekatain, Francisco J. H. Heras, Alexander Novikov, Nathan Fitzpatrick, Bernardino Romera-Paredes, John van de Wetering, Alhussein Fawzi, Konstantinos Meichanetzidis, and Pushmeet Kohli, "Quantum Circuit Optimization with AlphaTensor", arXiv:2402.14396, (2024).

[27] Dario Rocca, Cristian L. Cortes, Jerome Gonthier, Pauline J. Ollitrault, Robert M. Parrish, Gian-Luca Anselmetti, Matthias Degroote, Nikolaj Moll, Raffaele Santagati, and Michael Streif, "Reducing the runtime of fault-tolerant quantum simulations in chemistry through symmetry-compressed double factorization", arXiv:2403.03502, (2024).

[28] Aleksei V. Ivanov, Christoph Sünderhauf, Nicole Holzmann, Tom Ellaby, Rachel N. Kerber, Glenn Jones, and Joan Camps, "Quantum computation for periodic solids in second quantization", Physical Review Research 5 1, 013200 (2023).

[29] Nicholas C. Rubin, Dominic W. Berry, Fionn D. Malone, Alec F. White, Tanuj Khattar, A. Eugene DePrince, Sabrina Sicolo, Michael Küehn, Michael Kaicher, Joonho Lee, and Ryan Babbush, "Fault-Tolerant Quantum Simulation of Materials Using Bloch Orbitals", PRX Quantum 4 4, 040303 (2023).

[30] Salonik Resch and Ulya R. Karpuzcu, "Quantum Computing: An Overview Across the System Stack", arXiv:1905.07240, (2019).

[31] Daniel Litinski and Naomi Nickerson, "Active volume: An architecture for efficient fault-tolerant quantum computers with limited non-local connections", arXiv:2211.15465, (2022).

[32] Connor T. Hann, Gideon Lee, S. M. Girvin, and Liang Jiang, "Resilience of Quantum Random Access Memory to Generic Noise", PRX Quantum 2 2, 020311 (2021).

[33] Cristian L. Cortes, Matthias Loipersberger, Robert M. Parrish, Sam Morley-Short, William Pol, Sukin Sim, Mark Steudtner, Christofer S. Tautermann, Matthias Degroote, Nikolaj Moll, Raffaele Santagati, and Michael Streif, "Fault-Tolerant Quantum Algorithm for Symmetry-Adapted Perturbation Theory", PRX Quantum 5 1, 010336 (2024).

[34] Stepan Fomichev, Kasra Hejazi, Modjtaba Shokrian Zini, Matthew Kiser, Joana Fraxanet Morales, Pablo Antonio Moreno Casares, Alain Delgado, Joonsuk Huh, Arne-Christian Voigt, Jonathan E. Mueller, and Juan Miguel Arrazola, "Initial state preparation for quantum chemistry on quantum computers", arXiv:2310.18410, (2023).

[35] Craig Gidney, "Windowed quantum arithmetic", arXiv:1905.07682, (2019).

[36] Matthias Rosenkranz, Eric Brunner, Gabriel Marin-Sanchez, Nathan Fitzpatrick, Silas Dilkes, Yao Tang, Yuta Kikuchi, and Marcello Benedetti, "Quantum state preparation for multivariate functions", arXiv:2405.21058, (2024).

[37] Oskar Leimkuhler and K. Birgitta Whaley, "A quantum eigenvalue solver based on tensor networks", arXiv:2404.10223, (2024).

[38] Alexander M. Dalzell, B. David Clader, Grant Salton, Mario Berta, Cedric Yen-Yu Lin, David A. Bader, Nikitas Stamatopoulos, Martin J. A. Schuetz, Fernando G. S. L. Brandão, Helmut G. Katzgraber, and William J. Zeng, "End-To-End Resource Analysis for Quantum Interior-Point Methods and Portfolio Optimization", PRX Quantum 4 4, 040325 (2023).

[39] Mark Steudtner, Sam Morley-Short, William Pol, Sukin Sim, Cristian L. Cortes, Matthias Loipersberger, Robert M. Parrish, Matthias Degroote, Nikolaj Moll, Raffaele Santagati, and Michael Streif, "Fault-tolerant quantum computation of molecular observables", Quantum 7, 1164 (2023).

[40] William J. Huggins, Kianna Wan, Jarrod McClean, Thomas E. O'Brien, Nathan Wiebe, and Ryan Babbush, "Nearly Optimal Quantum Algorithm for Estimating Multiple Expectation Values", Physical Review Letters 129 24, 240501 (2022).

[41] Guang Hao Low, Nicholas P. Bauman, Christopher E. Granade, Bo Peng, Nathan Wiebe, Eric J. Bylaska, Dave Wecker, Sriram Krishnamoorthy, Martin Roetteler, Karol Kowalski, Matthias Troyer, and Nathan A. Baker, "Q# and NWChem: Tools for Scalable Quantum Chemistry on Quantum Computers", arXiv:1904.01131, (2019).

[42] Sam McArdle, András Gilyén, and Mario Berta, "A streamlined quantum algorithm for topological data analysis with exponentially fewer qubits", arXiv:2209.12887, (2022).

[43] Guang Hao Low, Yuan Su, Yu Tong, and Minh C. Tran, "Complexity of Implementing Trotter Steps", PRX Quantum 4 2, 020323 (2023).

[44] Pei Yuan and Shengyu Zhang, "Optimal (controlled) quantum state preparation and improved unitary synthesis by quantum circuits with any number of ancillary qubits", Quantum 7, 956 (2023).

[45] Timothy N. Georges, Marius Bothe, Christoph Sünderhauf, Bjorn K. Berntson, Róbert Izsák, and Aleksei V. Ivanov, "Quantum Simulations of Chemistry in First Quantization with any Basis Set", arXiv:2408.03145, (2024).

[46] Kun Fang and Zi-Wen Liu, "No-Go Theorems for Quantum Resource Purification: New Approach and Channel Theory", PRX Quantum 3 1, 010337 (2022).

[47] Ignacio Loaiza and Artur F. Izmaylov, "Majorana Tensor Decomposition: A unifying framework for decompositions of fermionic Hamiltonians to Linear Combination of Unitaries", arXiv:2407.06571, (2024).

[48] D. V. Denisenko, "Quantum Circuits for S-Box Implementation without Ancilla Qubits", Soviet Journal of Experimental and Theoretical Physics 128 6, 847 (2019).

[49] Junyu Liu, Connor T. Hann, and Liang Jiang, "Data centers with quantum random access memory and quantum networks", Physical Review A 108 3, 032610 (2023).

[50] Jarrod R. McClean, Fabian M. Faulstich, Qinyi Zhu, Bryan O'Gorman, Yiheng Qiu, Steven R. White, Ryan Babbush, and Lin Lin, "Discontinuous Galerkin discretization for quantum simulation of chemistry", New Journal of Physics 22 9, 093015 (2020).

[51] Kaiwen Gui, Alexander M. Dalzell, Alessandro Achille, Martin Suchara, and Frederic T. Chong, "Spacetime-Efficient Low-Depth Quantum State Preparation with Applications", Quantum 8, 1257 (2024).

[52] Kun Fang and Zi-Wen Liu, "No-go theorems for quantum resource purification II: new approach and channel theory", arXiv:2010.11822, (2020).

[53] Shifan Xu, Connor T. Hann, Ben Foxman, Steven M. Girvin, and Yongshan Ding, "Systems Architecture for Quantum Random Access Memory", arXiv:2306.03242, (2023).

[54] Yuval R. Sanders, Dominic W. Berry, Pedro C. S. Costa, Louis W. Tessler, Nathan Wiebe, Craig Gidney, Hartmut Neven, and Ryan Babbush, "Compilation of Fault-Tolerant Quantum Heuristics for Combinatorial Optimization", arXiv:2007.07391, (2020).

[55] B. David Clader, Alexander M. Dalzell, Nikitas Stamatopoulos, Grant Salton, Mario Berta, and William J. Zeng, "Quantum Resources Required to Block-Encode a Matrix of Classical Data", arXiv:2206.03505, (2022).

[56] Richard Meister, Simon C. Benjamin, and Earl T. Campbell, "Tailoring Term Truncations for Electronic Structure Calculations Using a Linear Combination of Unitaries", arXiv:2007.11624, (2020).

[57] Kianna Wan, "Exponentially faster implementations of Select(H) for fermionic Hamiltonians", Quantum 5, 380 (2021).

[58] Israel F. Araujo, Daniel K. Park, Teresa B. Ludermir, Wilson R. Oliveira, Francesco Petruccione, and Adenilton J. da Silva, "Configurable sublinear circuits for quantum state preparation", arXiv:2108.10182, (2021).

[59] Olivia Di Matteo, Vlad Gheorghiu, and Michele Mosca, "Fault tolerant resource estimation of quantum random-access memories", arXiv:1902.01329, (2019).

[60] Guang Hao Low, "Halving the cost of quantum multiplexed rotations", arXiv:2110.13439, (2021).

[61] Gideon Lee, Connor T. Hann, Shruti Puri, S. M. Girvin, and Liang Jiang, "Error Suppression for Arbitrary-Size Black Box Quantum Operations", Physical Review Letters 131 19, 190601 (2023).

[62] Chunlin Yang, Hongmei Yao, Zexian Li, Zhaobing Fan, Guofeng Zhang, and Jianshe Liu, "Block encoding of sparse structured matrices coming from ocean acoustics in quantum computing", arXiv:2405.18007, (2024).

[63] Pablo A. M. Casares, Roberto Campos, and M. A. Martin-Delgado, "TFermion: A non-Clifford gate cost assessment library of quantum phase estimation algorithms for quantum chemistry", Quantum 6, 768 (2022).

[64] Junyu Liu and Liang Jiang, "Quantum Data Center: Perspectives", arXiv:2309.06641, (2023).

[65] Sean Greenaway, William Pol, and Sukin Sim, "A case study against QSVT: assessment of quantum phase estimation improved by signal processing techniques", arXiv:2404.01396, (2024).

[66] Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia, "Implementing Grover oracles for quantum key search on AES and LowMC", arXiv:1910.01700, (2019).

[67] Jack S. Baker, Pablo A. M. Casares, Modjtaba Shokrian Zini, Jaydeep Thik, Debasish Banerjee, Chen Ling, Alain Delgado, and Juan Miguel Arrazola, "Simulating optically-active spin defects with a quantum computer", arXiv:2405.13115, (2024).

[68] Roberto Campos, "Hybrid Quantum-Classical Algorithms", arXiv:2406.12371, (2024).

[69] Saeed Mehraban and Mehrdad Tahmasbi, "Quadratic Lower bounds on the Approximate Stabilizer Rank: A Probabilistic Approach", arXiv:2305.10277, (2023).

[70] Pei Yuan, Jonathan Allcock, and Shengyu Zhang, "Does qubit connectivity impact quantum circuit complexity?", arXiv:2211.05413, (2022).

[71] Richard Meister, Simon C. Benjamin, and Earl T. Campbell, "Tailoring Term Truncations for Electronic Structure Calculations Using a Linear Combination of Unitaries", Quantum 6, 637 (2022).

[72] Charles Yuan, Agnes Villanyi, and Michael Carbin, "Quantum Control Machine: The Limits of Control Flow in Quantum Programming", arXiv:2304.15000, (2023).

[73] Rajiv Krishnakumar, Mathias Soeken, Martin Roetteler, and William J. Zeng, "A Q# Implementation of a Quantum Lookup Table for Quantum Arithmetic Functions", arXiv:2210.11786, (2022).

[74] Charles Yuan and Michael Carbin, "The T-Complexity Costs of Error Correction for Control Flow in Quantum Computation", arXiv:2311.12772, (2023).

[75] Thomas Häner, Vadym Kliuchnikov, Martin Roetteler, and Mathias Soeken, "Space-time optimized table lookup", arXiv:2211.01133, (2022).

[76] Alexis Ralli, Gabriel Greene-Diniz, David Muñoz Ramo, and Nathan Fitzpatrick, "Calculating the Single-Particle Many-body Green's Functions via the Quantum Singular Value Transform Algorithm", arXiv:2307.13583, (2023).

[77] Stephen P. Jordan, Noah Shutty, Mary Wootters, Adam Zalcman, Alexander Schmidhuber, Robbie King, Sergei V. Isakov, and Ryan Babbush, "Optimization by Decoded Quantum Interferometry", arXiv:2408.08292, (2024).

[78] Wei Zi, Siyi Wang, Hyunji Kim, Xiaoming Sun, Anupam Chattopadhyay, and Patrick Rebentrost, "Efficient Quantum Circuits for Machine Learning Activation Functions including Constant T-depth ReLU", arXiv:2404.06059, (2024).

[79] Aleksei V. Ivanov, Andrew Patterson, Marius Bothe, Christoph Sünderhauf, Bjorn K. Berntson, Jens Jørgen Mortensen, Mikael Kuisma, Earl Campbell, and Róbert Izsák, "Quantum Computation of Electronic Structure with Projector Augmented-Wave Method and Plane Wave Basis Set", arXiv:2408.03159, (2024).

The above citations are from SAO/NASA ADS (last updated successfully 2024-09-02 17:10:33). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-09-02 17:10:30).