Fold-Transversal Clifford Gates for Quantum Codes

Nikolas P. Breuckmann1 and Simon Burton2

1Department of Computer Science, University College London, WC1E 6BT London, United Kingdom
2Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We generalize the concept of folding from surface codes to CSS codes by considering certain dualities within them. In particular, this gives a general method to implement logical operations in suitable LDPC quantum codes using transversal gates and qubit permutations only.
To demonstrate our approach, we specifically consider a [[30, 8, 3]] hyperbolic quantum code called Bring's code. Further, we show that by restricting the logical subspace of Bring's code to four qubits, we can obtain the $full$ Clifford group on that subspace.

Quantum error correcting codes (QECCs) encode quantum information into the non-local degrees of freedom of a many-body system. It is widely accepted that QECCs will play a crucial role in the development of scalable quantum computers.
A key challenge to utilize QECCs is to manipulate the encoded information in a fault-tolerant way. In this work we develop an approach that utilizes symmetries of QECCs to find non-trivial sets of quantum operations that can be implemented very efficiently and fault-tolerantly.

► BibTeX data

► References

[1] Jonathan E. Moussa. ``Transversal Clifford gates on folded surface codes''. Phys. Rev. A 94, 042316 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.042316

[2] Aleksander Kubica, Beni Yoshida, and Fernando Pastawski. ``Unfolding the color code''. New Journal of Physics 17, 083026 (2015).
https:/​/​doi.org/​10.1088/​1367-2630/​17/​8/​083026

[3] Nikolas P. Breuckmann and Jens Niklas Eberhardt. ``Quantum Low-Density Parity-Check Codes''. PRX Quantum 2, 040101 (2021).
https:/​/​doi.org/​10.1103/​PRXQuantum.2.040101

[4] Daniel Gottesman. ``Fault-tolerant quantum computation with constant overhead''. Quantum Information and ComputationPages 1338–1372 (2014).
https:/​/​doi.org/​10.26421/​QIC14.15-16

[5] Omar Fawzi, Antoine Grospellier, and Anthony Leverrier. ``Constant overhead quantum fault tolerance with quantum expander codes''. Commun. ACM 64, 106–114 (2020).
https:/​/​doi.org/​10.1145/​3434163

[6] Matthew B. Hastings, Jeongwan Haah, and Ryan O'Donnell. ``Fiber Bundle Codes''. Page 1276–1288. Association for Computing Machinery. New York, NY, USA (2021).
https:/​/​doi.org/​10.1145/​3406325.3451005

[7] Pavel Panteleev and Gleb Kalachev. ``Quantum LDPC Codes With Almost Linear Minimum Distance''. IEEE Transactions on Information Theory 68, 213–229 (2022).
https:/​/​doi.org/​10.1109/​TIT.2021.3119384

[8] Nikolas P. Breuckmann and Jens N. Eberhardt. ``Balanced Product Quantum Codes''. IEEE Transactions on Information Theory 67, 6653–6674 (2021).
https:/​/​doi.org/​10.1109/​TIT.2021.3097347

[9] Pavel Panteleev and Gleb Kalachev. ``Asymptotically good quantum and locally testable classical ldpc codes''. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing. Page 375–388. STOC 2022New York, NY, USA (2022). Association for Computing Machinery.
https:/​/​doi.org/​10.1145/​3519935.3520017

[10] Nikolas P. Breuckmann, Christophe Vuillot, Earl Campbell, Anirudh Krishna, and Barbara M. Terhal. ``Hyperbolic and semi-hyperbolic surface codes for quantum storage''. Quantum Science and Technology 2, 035007 (2017).
https:/​/​doi.org/​10.1088/​2058-9565/​aa7d3b

[11] Ali Lavasani and Maissam Barkeshli. ``Low overhead Clifford gates from joint measurements in surface, color, and hyperbolic codes''. Phys. Rev. A 98, 052319 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.052319

[12] Anirudh Krishna and David Poulin. ``Fault-tolerant gates on hypergraph product codes''. Phys. Rev. X 11, 011023 (2021).
https:/​/​doi.org/​10.1103/​PhysRevX.11.011023

[13] Simon Burton and Dan Browne. ``Limitations on transversal gates for hypergraph product codes''. IEEE Transactions on Information Theory 68, 1772–1781 (2022).
https:/​/​doi.org/​10.1109/​TIT.2021.3131043

[14] Lawrence Z. Cohen, Isaac H. Kim, Stephen D. Bartlett, and Benjamin J. Brown. ``Low-overhead fault-tolerant quantum computing using long-range connectivity''. Science Advances 8, eabn1717 (2022).
https:/​/​doi.org/​10.1126/​sciadv.abn1717

[15] Terry Rudolph. ``Why I am optimistic about the silicon-photonic route to quantum computing''. APL Photonics 2, 030901 (2017).
https:/​/​doi.org/​10.1063/​1.4976737

[16] Hector Bombin, Isaac H Kim, Daniel Litinski, Naomi Nickerson, Mihir Pant, Fernando Pastawski, Sam Roberts, and Terry Rudolph. ``Interleaving: Modular architectures for fault-tolerant photonic quantum computing'' (2021).

[17] Sara Bartolucci, Patrick Birchall, Hector Bombin, Hugo Cable, Chris Dawson, Mercedes Gimeno-Segovia, Eric Johnston, Konrad Kieling, Naomi Nickerson, Mihir Pant, et al. ``Fusion-based quantum computation''. Nature Communications 14, 912 (2023).
https:/​/​doi.org/​10.1038/​s41467-023-36493-1

[18] Isaac H. Kim, Ye-Hua Liu, Sam Pallister, William Pol, Sam Roberts, and Eunseok Lee. ``Fault-tolerant resource estimate for quantum chemical simulations: Case study on li-ion battery electrolyte molecules''. Phys. Rev. Res. 4, 023019 (2022).
https:/​/​doi.org/​10.1103/​PhysRevResearch.4.023019

[19] C. Monroe and J. Kim. ``Scaling the ion trap quantum processor''. Science 339, 1164–1169 (2013).
https:/​/​doi.org/​10.1126/​science.1231298

[20] Ramil Nigmatullin, Christopher J Ballance, Niel De Beaudrap, and Simon C Benjamin. ``Minimally complex ion traps as modules for quantum communication and computing''. New Journal of Physics 18, 103028 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​10/​103028

[21] Naomi H. Nickerson, Joseph F. Fitzsimons, and Simon C. Benjamin. ``Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links''. Phys. Rev. X 4, 041041 (2014).
https:/​/​doi.org/​10.1103/​PhysRevX.4.041041

[22] Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T Wang, Sepehr Ebadi, Marcin Kalinowski, Alexander Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, et al. ``A quantum processor based on coherent transport of entangled atom arrays''. Nature 604, 451–456 (2022).
https:/​/​doi.org/​10.1038/​s41586-022-04592-6

[23] T. Pellizzari, S. A. Gardiner, J. I. Cirac, and P. Zoller. ``Decoherence, continuous observation, and quantum computing: A cavity qed model''. Phys. Rev. Lett. 75, 3788–3791 (1995).
https:/​/​doi.org/​10.1103/​PhysRevLett.75.3788

[24] Andrew C. J. Wade, Marco Mattioli, and Klaus Mølmer. ``Single-atom single-photon coupling facilitated by atomic-ensemble dark-state mechanisms''. Phys. Rev. A 94, 053830 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.053830

[25] Joshua Ramette, Josiah Sinclair, Zachary Vendeiro, Alyssa Rudelis, Marko Cetina, and Vladan Vuletić. ``Any-to-any connected cavity-mediated architecture for quantum computing with trapped ions or rydberg arrays''. PRX Quantum 3, 010344 (2022).
https:/​/​doi.org/​10.1103/​PRXQuantum.3.010344

[26] Ernesto Girondo and Gabino González-Diez. ``Introduction to compact riemann surfaces and dessins d’enfants''. London Mathematical Society Student Texts. Cambridge University Press. (2011).
https:/​/​doi.org/​10.1017/​CBO9781139048910

[27] Nikolas P. Breuckmann and Barbara M. Terhal. ``Constructions and Noise Threshold of Hyperbolic Surface Codes''. IEEE Transactions on Information Theory 62, 3731–3744 (2016).
https:/​/​doi.org/​10.1109/​TIT.2016.2555700

[28] Nikolas P. Breuckmann. ``Homological Quantum Codes Beyond the Toric Code''. PhD thesis. RWTH Aachen University. (2017). url: https:/​/​d-nb.info/​1162900415/​34.
https:/​/​d-nb.info/​1162900415/​34

[29] Beverley Bolt, T. G. Room, and G. E. Wall. ``On the Clifford collineation, transform and similarity groups. II.''. Journal of the Australian Mathematical Society 2, 80–96 (1961).
https:/​/​doi.org/​10.1017/​S1446788700026380

[30] Robert Koenig and John A. Smolin. ``How to efficiently select an arbitrary Clifford group element''. Journal of Mathematical Physics 55, 122202 (2014).
https:/​/​doi.org/​10.1063/​1.4903507

[31] The GAP Group. ``GAP – Groups, Algorithms, and Programming, Version 4.11.1''. (2021). url: https:/​/​www.gap-system.org.
https:/​/​www.gap-system.org

[32] Robert Webb. ``Stella: polyhedron navigator''. Symmetry: Culture and Science 11, 231–268 (2003). url: https:/​/​www.software3d.com/​PolyNav/​PolyNavigator.php.
https:/​/​www.software3d.com/​PolyNav/​PolyNavigator.php

[33] Jonathan Conrad, Christopher Chamberland, Nikolas P. Breuckmann, and Barbara M. Terhal. ``The small stellated dodecahedron code and friends''. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, 20170323 (2018).
https:/​/​doi.org/​10.1098/​rsta.2017.0323

[34] Markus Grassl and Martin Roetteler. ``Leveraging automorphisms of quantum codes for fault-tolerant quantum computation''. In 2013 IEEE International Symposium on Information Theory. Pages 534–538. (2013).
https:/​/​doi.org/​10.1109/​ISIT.2013.6620283

[35] Bei Zeng, Andrew Cross, and Isaac L. Chuang. ``Transversality Versus Universality for Additive Quantum Codes''. IEEE Transactions on Information Theory 57, 6272–6284 (2011).
https:/​/​doi.org/​10.1109/​TIT.2011.2161917

[36] ``John Baez. Golay Code. American Mathematical Society, Visual Insight Blog, 2015. https:/​/​blogs.ams.org/​visualinsight/​2015/​12/​01/​golay-code/​''.
https:/​/​blogs.ams.org/​visualinsight/​2015/​12/​01/​golay-code/​

Cited by

[1] Josias Old, Manuel Rispler, and Markus Müller, "Lift-connected surface codes", Quantum Science and Technology 9 4, 045012 (2024).

[2] Sergey Bravyi, Andrew W. Cross, Jay M. Gambetta, Dmitri Maslov, Patrick Rall, and Theodore J. Yoder, "High-threshold and low-overhead fault-tolerant quantum memory", Nature 627 8005, 778 (2024).

[3] Qian Xu, J. Pablo Bonilla Ataides, Christopher A. Pattison, Nithin Raveendran, Dolev Bluvstein, Jonathan Wurtz, Bane Vasić, Mikhail D. Lukin, Liang Jiang, and Hengyun Zhou, "Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays", Nature Physics 20 7, 1084 (2024).

[4] Diego Ruiz, Jérémie Guillaud, Anthony Leverrier, Mazyar Mirrahimi, and Christophe Vuillot, "LDPC-cat codes for low-overhead quantum computing in 2D", arXiv:2401.09541, (2024).

[5] Oscar Higgott and Nikolas P. Breuckmann, "Constructions and performance of hyperbolic and semi-hyperbolic Floquet codes", arXiv:2308.03750, (2023).

[6] Ryohei Kobayashi and Guanyu Zhu, "Cross-Cap Defects and Fault-Tolerant Logical Gates in the Surface Code and the Honeycomb Floquet Code", PRX Quantum 5 2, 020360 (2024).

[7] Guanyu Zhu, Shehryar Sikander, Elia Portnoy, Andrew W. Cross, and Benjamin J. Brown, "Non-Clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum LDPC codes via higher symmetries", arXiv:2310.16982, (2023).

[8] Hengyun Zhou, Chen Zhao, Madelyn Cain, Dolev Bluvstein, Casey Duckering, Hong-Ye Hu, Sheng-Tao Wang, Aleksander Kubica, and Mikhail D. Lukin, "Algorithmic Fault Tolerance for Fast Quantum Computing", arXiv:2406.17653, (2024).

[9] Daniel Gottesman, "Opportunities and Challenges in Fault-Tolerant Quantum Computation", arXiv:2210.15844, (2022).

[10] Maxime A. Tremblay, Nicolas Delfosse, and Michael E. Beverland, "Constant-Overhead Quantum Error Correction with Thin Planar Connectivity", Physical Review Letters 129 5, 050504 (2022).

[11] Armanda O. Quintavalle, Paul Webster, and Michael Vasmer, "Partitioning qubits in hypergraph product codes to implement logical gates", Quantum 7, 1153 (2023).

[12] Arda Aydin, Max A. Alekseyev, and Alexander Barg, "A family of permutationally invariant quantum codes", Quantum 8, 1321 (2024).

[13] Alexander Cowtan, "SSIP: automated surgery with quantum LDPC codes", arXiv:2407.09423, (2024).

[14] Hayata Yamasaki and Masato Koashi, "Time-Efficient Constant-Space-Overhead Fault-Tolerant Quantum Computation", Nature Physics 20 2, 247 (2024).

[15] Alexander Cowtan and Simon Burton, "CSS code surgery as a universal construction", Quantum 8, 1344 (2024).

[16] Mark A. Webster, Armanda O. Quintavalle, and Stephen D. Bartlett, "Transversal diagonal logical operators for stabiliser codes", New Journal of Physics 25 10, 103018 (2023).

[17] Alexander Cowtan, "Towards surgery with good quantum LDPC codes", arXiv:2309.16406, (2023).

[18] Qian Xu, Hengyun Zhou, Guo Zheng, Dolev Bluvstein, J. Pablo Bonilla Ataides, Mikhail D. Lukin, and Liang Jiang, "Fast and Parallelizable Logical Computation with Homological Product Codes", arXiv:2407.18490, (2024).

[19] Simon Burton, Elijah Durso-Sabina, and Natalie C. Brown, "Genons, Double Covers and Fault-tolerant Clifford Gates", arXiv:2406.09951, (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-09-03 07:57:06) and SAO/NASA ADS (last updated successfully 2024-09-02 11:07:37). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch ADS cited-by data during last attempt 2024-09-03 07:57:06: cURL error 28: Operation timed out after 10001 milliseconds with 0 bytes received