Precisely determining photon-number in real time

Leonardo Assis Morais1,2, Till Weinhold1,2, Marcelo Pereira de Almeida1,2, Joshua Combes3, Markus Rambach1,2, Adriana Lita4, Thomas Gerrits4, Sae Woo Nam4, Andrew G. White1,2, and Geoff Gillett1,2,5

1Centre for Engineered Quantum Systems, University of Queensland, QLD 4072, Australia
2School of Mathematics and Physics, University of Queensland, QLD 4072, Australia
3Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
4National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
5Quantum Valley Ideas Lab, Waterloo, ON N2L 6R2, Canada

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Superconducting transition-edge sensors (TES) are extremely sensitive microcalorimeters used as photon detectors with unparalleled energy resolution. They have found application from measuring astronomical spectra through to determining the quantum property of photon-number, $\hat{n} {=} \hat{a}^† \hat{a}$, for energies from 0.6-2.33eV. However, achieving optimal energy resolution requires considerable data acquisition – on the order of 1GB/min – followed by post-processing, which does not allow access to energy information in real time. Here we use a custom hardware processor to process TES pulses while new detections are still being registered, allowing photon-number to be measured in real time as well as reducing data requirements by orders-of-magnitude. We resolve photon number up to $n=16$ – achieving up to parts-per-billion discrimination for low photon numbers on the fly – providing transformational capacity for applications of TES detectors from astronomy through to quantum technology.

Transition-edge sensors (TES) are microcalorimeters that can achieve energy resolution in the order of a few eV’s and perform photon-number-resolving measurements with extremely high efficiency. In this work, we developed a photon detection system that uses a field-programmable gate array (FPGA) to digitise and analyse the TES pulse instantaneously, which allows us to perform real-time photon-number-resolving measurements. We show that we can use the detection system for an extensive range of photon numbers up to 16. Additionally, for low photon numbers, we achieved parts-per-billion discrimination. Among the potential applications, we highlight its use for continuous variable quantum computing, where photon number measurements can function as a non-gaussian resource, a required ingredient for universal quantum computing.

► BibTeX data

► References

[1] R. W. Romani, A. J. Miller, B. Cabrera, E. Figueroa-Feliciano, S. W. Nam, First Astronomical Application of a Cryogenic Transition Edge Sensor Spectrophotometer, ApJ 521 (2) (1999) L153–L156. doi:10.1086/​312202.

[2] J. Burney, T. Bay, J. Barral, P. Brink, B. Cabrera, J. Castle, A. Miller, S. Nam, D. Rosenberg, R. Romani, A. Tomada, Transition-edge sensor arrays for UV-optical-IR astrophysics, Nucl. Instrum. Methods Phys. Res. A 559 (2) (2006) 525–527. doi:10.1016/​j.nima.2005.12.060.

[3] S. J. Smith, J. S. Adams, S. R. Bandler, J. A. Chervenak, A. M. Datesman, M. E. Eckart, F. M. Finkbeiner, R. Hummatov, R. L. Kelley, C. A. Kilbourne, A. R. Miniussi, F. S. Porter, J. E. Sadleir, K. Sakai, N. A. Wakeham, E. J. Wassell, Multiabsorber transition-edge sensors for x-ray astronomy, JATIS 5 (2) (2019) 021008. doi:10.1117/​1.JATIS.5.2.021008.

[4] J. L. O'Brien, A. Furusawa, J. Vučković, Photonic quantum technologies, Nat. Photon. 3 (12) (2009) 687–695. doi:10.1038/​nphoton.2009.229.

[5] R. H. Hadfield, Single-photon detectors for optical quantum information applications, Nat. Photon. 3 (12) (2009) 696–705. doi:10.1038/​nphoton.2009.230.

[6] S. Slussarenko, G. J. Pryde, Photonic quantum information processing: A concise review, Appl. Phys. Rev. 6 (1) (2019) 041303. doi:10.1063/​1.5115814.

[7] N. Quesada, L. G. Helt, J. Izaac, J. M. Arrazola, R. Shahrokhshahi, C. R. Myers, K. K. Sabapathy, Simulating realistic non-Gaussian state preparation, Phys. Rev. A 100 (2) (2019) 022341. doi:10.1103/​PhysRevA.100.022341.

[8] D. Su, C. R. Myers, K. K. Sabapathy, Conversion of Gaussian states to non-Gaussian states using photon-number-resolving detectors, Phys. Rev. A 100 (5) (2019) 052301. doi:10.1103/​PhysRevA.100.052301.

[9] I. Tzitrin, J. E. Bourassa, N. C. Menicucci, K. K. Sabapathy, Progress towards practical qubit computation using approximate Gottesman-Kitaev-Preskill codes, Phys. Rev. A 101 (3) (2020) 032315. doi:10.1103/​PhysRevA.101.032315.

[10] B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, R. W. Romani, Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors, Appl. Phys. Lett. 73 (6) (1998) 735–737. doi:10.1063/​1.121984.

[11] A. J. Miller, S. W. Nam, J. M. Martinis, A. V. Sergienko, Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination, Appl. Phys. Lett. 83 (4) (2003) 791–793. doi:10.1063/​1.1596723.

[12] D. Rosenberg, A. Lita, A. Miller, S. Nam, Noise-free high-efficiency photon-number-resolving detectors, Phys. Rev. A 71 (6) (2005) 061803(R). doi:10.1103/​PhysRevA.71.061803.

[13] A. E. Lita, A. J. Miller, S. W. Nam, Counting near-infrared single-photons with 95% efficiency, Opt. Express 16 (5) (2008) 3032. doi:10.1364/​OE.16.003032.

[14] D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, T. Zama, Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling, Opt. Express 19 (2) (2011) 870. doi:10.1364/​OE.19.000870.

[15] L. Stasi, G. Gras, R. Berrazouane, M. Perrenoud, H. Zbinden, F. Bussières, Fast high-efficiency photon-number-resolving parallel superconducting nanowire single-photon detector, Phys. Rev. Appl. 19 (2023) 064041. doi:10.1103/​PhysRevApplied.19.064041. https:/​/​​10.1103/​PhysRevApplied.19.064041.

[16] C. Cahall, K. L. Nicolich, N. T. Islam, G. P. Lafyatis, A. J. Miller, D. J. Gauthier, J. Kim, Multi-photon detection using a conventional superconducting nanowire single-photon detector, Optica 4 (12) (2017) 1534–1535. doi:10.1364/​OPTICA.4.001534. https:/​/​​optica/​abstract.cfm?URI=optica-4-12-1534.

[17] X. Tao, S. Chen, Y. Chen, L. Wang, X. Li, X. Tu, X. Jia, Q. Zhao, L. Zhang, L. Kang, P. Wu, A high speed and high efficiency superconducting photon number resolving detector, Supercond. Sci. Technol. 32 (6) (2019) 064002. doi:10.1088/​1361-6668/​ab0799.

[18] F. Mattioli, Z. Zhou, A. Gaggero, R. Gaudio, R. Leoni, A. Fiore, Photon-counting and analog operation of a 24-pixel photon number resolving detector based on superconducting nanowires, Opt. Express 24 (8) (2016) 9067–9076. doi:10.1364/​OE.24.009067.

[19] R. Hummatov, A. E. Lita, T. Farrahi, N. Otrooshi, S. Fayer, M. J. Collins, M. Durkin, D. Bennett, J. Ullom, R. P. Mirin, S. Woo Nam, Fast transition-edge sensors suitable for photonic quantum computing, Journal of Applied Physics 133 (23) (2023) 234502. doi:10.1063/​5.0149478.

[20] C. Portesi, E. Taralli, L. Lolli, M. Rajteri, E. Monticone, Fabrication and characterization of fast tess with small area for single photon counting, IEEE Transactions on Applied Superconductivity 25 (3) (2015) 1–4. doi:10.1109/​TASC.2014.2367455.

[21] R. Kobayashi, K. Hattori, S. Inoue, D. Fukuda, Development of a fast response titanium-gold bilayer optical tes with an optical fiber self-alignment structure, IEEE Transactions on Applied Superconductivity 29 (5) (2019) 1–5. doi:10.1109/​TASC.2019.2909978.

[22] M. Eaton, A. Hossameldin, R. J. Birrittella, P. M. Alsing, C. C. Gerry, H. Dong, C. Cuevas, O. Pfister, Resolution of 100 photons and quantum generation of unbiased random numbers, Nat. Photon. 17 (1) (2023) 106–111. doi:10.1038/​s41566-022-01105-9. https:/​/​​articles/​s41566-022-01105-9.

[23] Z. H. Levine, T. Gerrits, A. L. Migdall, D. V. Samarov, B. Calkins, A. E. Lita, S. W. Nam, Algorithm for finding clusters with a known distribution and its application to photon-number resolution using a superconducting transition-edge sensor, J. Opt. Soc. Am. B 29 (8) (2012) 2066. doi:10.1364/​JOSAB.29.002066.

[24] P. C. Humphreys, B. J. Metcalf, T. Gerrits, T. Hiemstra, A. E. Lita, J. Nunn, S. W. Nam, A. Datta, W. S. Kolthammer, I. A. Walmsley, Tomography of photon-number resolving continuous-output detectors, New J. Phys. 17 (10) (2015) 103044. doi:10.1088/​1367-2630/​17/​10/​103044.

[25] B. Calkins, A. E. Lita, A. E. Fox, S. Woo Nam, Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks, Appl. Phys. Lett. 99 (24) (2011) 241114. doi:10.1063/​1.3659686.

[26] L. Lolli, E. Taralli, M. Rajteri, T. Numata, D. Fukuda, Characterization of Optical Fast Transition-Edge Sensors With Optimized Fiber Coupling, IEEE Trans. Appl. Supercond. 23 (3) (2013) 2100904. doi:10.1109/​TASC.2013.2238981.

[27] K. D. Irwin, An application of electrothermal feedback for high resolution cryogenic particle detection, Appl. Phys. Lett. 66 (15) (1995) 1998–2000. doi:10.1063/​1.113674.

[28] G. Gillett, A hardware signal processor for Transition Edge Sensors, PhD Thesis, The University of Queensland (2018). doi:10.14264/​uql.2019.51.

[29] J. S. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. L. Pregnell, C. Silberhorn, T. C. Ralph, J. Eisert, M. B. Plenio, I. A. Walmsley, Tomography of quantum detectors, Nat. Phys. 5 (1) (2009) 27–30. doi:10.1038/​nphys1133.

[30] A. Feito, J. S. Lundeen, H. Coldenstrodt-Ronge, J. Eisert, M. B. Plenio, I. A. Walmsley, Measuring measurement: theory and practice, New J. Phys. 11 (9) (2009) 093038. doi:10.1088/​1367-2630/​11/​9/​093038.

[31] G. Brida, L. Ciavarella, I. P. Degiovanni, M. Genovese, L. Lolli, M. G. Mingolla, F. Piacentini, M. Rajteri, E. Taralli, M. G. A. Paris, Quantum characterization of superconducting photon counters, New J. Phys. 14 (8) (2012) 085001. doi:10.1088/​1367-2630/​14/​8/​085001.

[32] S. Diamond, S. Boyd, CVXPY: A Python-Embedded Modeling Language for Convex Optimization, JMLR 17 (2016) 5.

[33] A. Agrawal, R. Verschueren, S. Diamond, S. Boyd, A rewriting system for convex optimization problems, JJ. Control Decis. 5 (1) (2018) 42–60. doi:10.1080/​23307706.2017.1397554.

[34] J. E. Bourassa, R. N. Alexander, M. Vasmer, A. Patil, I. Tzitrin, T. Matsuura, D. Su, B. Q. Baragiola, S. Guha, G. Dauphinais, K. K. Sabapathy, N. C. Menicucci, I. Dhand, Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer, Quantum 5 (2021) 392. doi:10.22331/​q-2021-02-04-392.

[35] C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, I. Jex, Gaussian Boson Sampling, Phys. Rev. Lett. 119 (17) (2017) 170501. doi:10.1103/​PhysRevLett.119.170501.

[36] N. Quesada, J. M. Arrazola, N. Killoran, Gaussian boson sampling using threshold detectors, Phys. Rev. A 98 (6) (2018) 062322. doi:10.1103/​PhysRevA.98.062322.

[37] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan, Quantum computational advantage using photons, Science 370 (6523) (2020) 1460. doi:10.1126/​science.abe8770.

[38] L. A. Howard, G. G. Gillett, M. E. Pearce, R. A. Abrahao, T. J. Weinhold, P. Kok, A. G. White, Optimal Imaging of Remote Bodies Using Quantum Detectors, Phys. Rev. Lett. 123 (14) (2019) 143604. doi:10.1103/​PhysRevLett.123.143604.

[39] K. Niwa, T. Numata, K. Hattori, D. Fukuda, Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry, Sci. Rep. 7 (1) (2017) 45660. doi:10.1038/​srep45660.

[40] A. E. Lita, D. V. Reddy, V. B. Verma, R. P. Mirin, S. W. Nam, Development of Superconducting Single-Photon and Photon-Number Resolving Detectors for Quantum Applications, J. Lightwave Technol., JLT 40 (23) (2022) 7578–7597. https:/​/​​jlt/​abstract.cfm?uri=jlt-40-23-7578.

Cited by

[1] Lars S. Madsen, Fabian Laudenbach, Mohsen Falamarzi. Askarani, Fabien Rortais, Trevor Vincent, Jacob F. F. Bulmer, Filippo M. Miatto, Leonhard Neuhaus, Lukas G. Helt, Matthew J. Collins, Adriana E. Lita, Thomas Gerrits, Sae Woo Nam, Varun D. Vaidya, Matteo Menotti, Ish Dhand, Zachary Vernon, Nicolás Quesada, and Jonathan Lavoie, "Quantum computational advantage with a programmable photonic processor", Nature 606 7912, 75 (2022).

[2] Miller Eaton, Amr Hossameldin, Richard J. Birrittella, Paul M. Alsing, Christopher C. Gerry, Hai Dong, Chris Cuevas, and Olivier Pfister, "Resolution of 100 photons and quantum generation of unbiased random numbers", Nature Photonics 17 1, 106 (2023).

[3] Lorenzo Stasi, Gaëtan Gras, Riad Berrazouane, Matthieu Perrenoud, Hugo Zbinden, and Félix Bussières, "Fast High-Efficiency Photon-Number-Resolving Parallel Superconducting Nanowire Single-Photon Detector", Physical Review Applied 19 6, 064041 (2023).

[4] Jaehak Lee, Nuri Kang, Seok-Hyung Lee, Hyunseok Jeong, Liang Jiang, and Seung-Woo Lee, "Fault-tolerant quantum computation by hybrid qubits with bosonic cat-code and single photons", arXiv:2401.00450, (2023).

[5] Daiqin Su, Ish Dhand, and Timothy C. Ralph, "Universal quantum computation with optical four-component cat qubits", Physical Review A 106 4, 042614 (2022).

[6] Miller Eaton, Carlos González-Arciniegas, Rafael N. Alexander, Nicolas C. Menicucci, and Olivier Pfister, "Measurement-based generation and preservation of cat and grid states within a continuous-variable cluster state", Quantum 6, 769 (2022).

[7] Joshua Combes and Austin P. Lund, "Homodyne measurement with a Schrödinger cat state as a local oscillator", Physical Review A 106 6, 063706 (2022).

[8] Italo Pereira Bezerra, Hilma M. Vasconcelos, and Scott Glancy, "Quadrature squeezing and temperature estimation from the Fock distribution", Quantum Information Processing 21 11, 365 (2022).

[9] Prajit Dhara, Spencer J. Johnson, Christos N. Gagatsos, Paul G. Kwiat, and Saikat Guha, "Heralded Multiplexed High-Efficiency Cascaded Source of Dual-Rail Entangled Photon Pairs Using Spontaneous Parametric Down-Conversion", Physical Review Applied 17 3, 034071 (2022).

[10] Lorenzo Stasi, Patrik Caspar, Tiff Brydges, Hugo Zbinden, Félix Bussières, and Rob Thew, "High-efficiency photon-number-resolving detector for improving heralded single-photon sources", Quantum Science and Technology 8 4, 045006 (2023).

[11] J. W. Niels Los, Mariia Sidorova, Bruno Lopez-Rodriguez, Patrick Qualm, Jin Chang, Stephan Steinhauer, Val Zwiller, and Iman Esmaeil Zadeh, "High-performance photon number resolving detectors for 850–950 nm wavelength range", APL Photonics 9 6, 066101 (2024).

[12] Josef Hloušek, Jan Grygar, Michal Dudka, and Miroslav Ježek, "High-resolution coincidence counting system for large-scale photonics applications", Physical Review Applied 21 2, 024023 (2024).

[13] Christopher C. Gerry, Richard J. Birrittella, Paul M. Alsing, Amr Hossameldin, Miller Eaton, and Olivier Pfister, "Proposal for a quantum random number generator using coherent light and a non-classical observable", Journal of the Optical Society of America B Optical Physics 39 4, 1068 (2022).

[14] Jakub Jirsa, Sergei Kulkov, Raphael A. Abrahao, Jesse Crawford, Aaron Mueninghoff, Ermanno Bernasconi, Claudio Bruschini, Samuel Burri, Stephen Vintskevich, Michal Marcisovsky, Edoardo Charbon, and Andrei Nomerotski, "Fast data-driven spectrometer with direct measurement of time and frequency for multiple single photons", arXiv:2304.11999, (2023).

[15] Tao Wang, Can Jiang, Junlong Zou, Hanxu Zhou, Xiao Lin, Hongsheng Chen, Gian Piero Puccioni, Gaofeng Wang, and Gian Luca Lippi, "Second-Order Correlation Function Supported Optical Sensing for Particle Detection", IEEE Sensors Journal 21 18, 19948 (2021).

[16] Shuo Li, Wenchao Li, Vladislav V. Yakovlev, Allison Kealy, and Andrew D. Greentree, "En route to nanoscopic quantum optical imaging: counting emitters with photon-number-resolving detectors", Optics Express 30 8, 12495 (2022).

[17] M. Dryazgov, Yu. Korneeva, and A. Korneev, "Micrometer-Wide Nb N Strips for Photon-Number-Resolving Detection", Physical Review Applied 19 3, 034067 (2023).

[18] Aaron Z. Goldberg and Khabat Heshami, "Teleamplification on the Borealis boson-sampling device", Physical Review A 108 6, 062606 (2023).

[19] Wenchao Li, Shuo Li, Timothy C. Brown, Qiang Sun, Xuezhi Wang, Vladislav V. Yakovlev, Allison Kealy, Bill Moran, and Andrew D. Greentree, "Estimation of the number of single-photon emitters for multiple fluorophores with the same spectral signature", AVS Quantum Science 5 4, 041401 (2023).

[20] Rajveer Nehra, Miller Eaton, Olivier Pfister, and Alireza Marandi, "All-optical Quantum State Engineering for Rotation-symmetric Bosonic States", arXiv:2105.11035, (2021).

[21] Ling-Dong Kong, Tian-Zhu Zhang, Xiao-Yu Liu, Hao Li, Zhen Wang, Xiao-Ming Xie, and Li-Xing You, "Large-inductance superconducting microstrip photon detector enabling 10 photon-number resolution", Advanced Photonics 6, 016004 (2024).

[22] Ye-Chao Liu, Jiangwei Shang, and Xiangdong Zhang, "Efficient verification of entangled continuous-variable quantum states with local measurements", Physical Review Research 3 4, L042004 (2021).

The above citations are from SAO/NASA ADS (last updated successfully 2024-06-18 11:44:32). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-06-18 11:44:29).