Resource Marginal Problems

Chung-Yun Hsieh1,2, Gelo Noel M. Tabia3,4,5,6, Yu-Chun Yin7,4, and Yeong-Cherng Liang4,5

1H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
2ICFO - Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
3Foxconn Quantum Computing Research Center, Taipei 114, Taiwan
4Department of Physics and Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan 701, Taiwan
5Physics Division, National Center for Theoretical Sciences, Taipei 106319, Taiwan
6Center for Quantum Technology, National Tsing Hua University, Hsinchu 300, Taiwan
7Institute of Communications Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We introduce the $\textit{resource marginal problems}$, which concern the possibility of having a resource-free target subsystem compatible with a $given$ collection of marginal density matrices. By identifying an appropriate choice of resource R and target subsystem T, our problems reduce, respectively, to the well-known $\textit{marginal problems}$ for quantum states and the problem of determining if a given quantum system is a resource. More generally, we say that a set of marginal states is $\textit{resource-free incompatible}$ with a target subsystem T if all global states compatible with this set must result in a resourceful state in T of type R. We show that this incompatibility $induces$ a resource theory that can be quantified by a monotone and obtain necessary and sufficient conditions for this monotone to be computable as a conic program with finite optimum. We further show, via the corresponding witnesses, that (1) resource-free incompatibility is equivalent to an operational advantage in some channel-discrimination tasks, and (2) some specific cases of such tasks fully characterize the convertibility between marginal density matrices exhibiting resource-free incompatibility. Through our framework, one sees a clear connection between any marginal problem – which implicitly involves some notion of incompatibility – for quantum states and a resource theory for quantum states. We also establish a close connection between the physical relevance of resource marginal problems and the ground state properties of certain many-body Hamiltonians. In terms of application, the universality of our framework leads, for example, to a further quantitative understanding of the incompatibility associated with the recently-proposed entanglement marginal problems and entanglement transitivity problems.

► BibTeX data

► References

[1] A. Higuchi, A. Sudbery, and J. Szulc, One-qubit reduced states of a pure many-qubit state: polygon inequalities, Phys. Rev. Lett. 90, 107902 (2003).
https:/​/​doi.org/​10.1103/​PhysRevLett.90.107902

[2] S. Bravyi, Requirements for compatibility between local and multipartite quantum states, Quantum Inf. Comput. 4, 012 (2004).
https:/​/​doi.org/​10.48550/​arXiv.quant-ph/​0301014
arXiv:quant-ph/0301014

[3] A. Klyachko, Quantum marginal problem and N-representability, J. Phys. Conf. Ser. 36, 014 (2006).
https:/​/​doi.org/​10.1088/​1742-6596/​36/​1/​014

[4] C. Schilling, Quantum Marginal Problem and Its Physical Relevance, Ph.D. thesis, ETH Zurich, 2014.
https:/​/​doi.org/​10.3929/​ethz-a-010139282

[5] R. M. Erdahl and B. Jin, On Calculating Approximate and Exact Density Matrices, book chapter (2000), in Many-Electron Densities and Density Matrices, edited by J. Cioslowski (Kluwer, Boston, 2000).
https:/​/​doi.org/​10.1007/​978-1-4615-4211-7_4

[6] M. Navascues, F. Baccari, and A. Acín, Entanglement marginal problems, Quantum 5, 589 (2021).
https:/​/​doi.org/​10.22331/​q-2021-11-25-589

[7] G.Tóth, C.Knapp, O.Gühne, and H. J. Briegel, Optimal spin squeezing inequalities detect bound entanglement in spin models, Phys. Rev. Lett. 99, 250405 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.99.250405

[8] Z. Wang, S. Singh, and M. Navascués, Entanglement and nonlocality in infinite 1D systems, Phys. Rev. Lett. 118, 230401 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.230401

[9] R. Horodecki, P. Horodecki, M.Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).
https:/​/​doi.org/​10.1103/​RevModPhys.81.865

[10] E. Chitambar and G. Gour, Quantum resource theories, Rev. Mod. Phys. 91, 025001 (2019).
https:/​/​doi.org/​10.1103/​RevModPhys.91.025001

[11] A. Streltsov, G. Adesso, and M. B. Plenio, Colloquium: quantum coherence as a resource, Rev. Mod. Phys. 89, 041003 (2017).
https:/​/​doi.org/​10.1103/​RevModPhys.89.041003

[12] F. G. S. L. Brand$\tilde{\rm a}$o, M. Horodecki, J. Oppenheim, J. M. Renes, and R. W. Spekkens, Resource theory of quantum states out of thermal equilibrium, Phys. Rev. Lett. 111, 250404 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.111.250404

[13] G. Gour and R. W. Spekkens, The resource theory of quantum reference frames: manipulations and monotones, New J. Phys. 10, 033023 (2008).
https:/​/​doi.org/​10.1088/​1367-2630/​10/​3/​033023

[14] J. I. de Vicente, On nonlocality as a resource theory and nonlocality measures, J. Phys. A: Math. Theor. 47, 424017 (2014).
https:/​/​doi.org/​10.1088/​1751-8113/​47/​42/​424017

[15] R. Gallego and L. Aolita, Resource theory of steering, Phys. Rev. X 5, 041008 (2015).
https:/​/​doi.org/​10.1103/​PhysRevX.5.041008

[16] M. Lostaglio, An introductory review of the resource theory approach to thermodynamics, Rep. Prog. Phys. 82, 114001 (2019).
https:/​/​doi.org/​10.1088/​1361-6633/​ab46e5

[17] E. Wolfe, D. Schmid, A. B. Sainz, R. Kunjwal, and R. W. Spekkens, Quantifying Bell: the resource theory of nonclassicality of common-cause boxes. Quantum 4, 280 (2020).
https:/​/​doi.org/​10.22331/​q-2020-06-08-280

[18] V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Quantifying entanglement, Phys. Rev. Lett. 78, 2275 (1997).
https:/​/​doi.org/​10.1103/​PhysRevLett.78.2275

[19] P. Skrzypczyk, M. Navascués, and D. Cavalcanti, Quantifying Einstein-Podolsky-Rosen steering, Phys. Rev. Lett. 112, 180404 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.112.180404

[20] T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113, 140401 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.140401

[21] D. Chruściński and F. A. Wudarski, Non-Markovianity degree for random unitary evolution, Phys. Rev. A 91, 012104 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.91.012104

[22] F. J. Curchod, N. Gisin, and Y.-C. Liang, Quantifying multipartite nonlocality via the size of the resource, Phys. Rev. A 91, 012121 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.91.012121

[23] I. Marvian and R. W. Spekkens, How to quantify coherence: distinguishing speakable and unspeakable notions, Phys. Rev. A 94, 052324 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.052324

[24] I. Marvian and R. Spekkens, The theory of manipulations of pure state asymmetry: I. basic tools, equivalence classes and single copy transformations, New. J. Phys. 15, 033001 (2013).
https:/​/​doi.org/​10.1088/​1367-2630/​15/​3/​033001

[25] F. G. S. L. Brand$\tilde{\rm a}$o, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, The second laws of quantum thermodynamics, Proc. Natl. Acad. Sci. U.S.A. 112, 3275 (2015).
https:/​/​doi.org/​10.1073/​pnas.1411728112

[26] M. Horodecki and J. Oppenheim, Fundamental limitations for quantum and nanoscale thermodynamics, Nat. Commun. 4, 2059 (2013).
https:/​/​doi.org/​10.1038/​ncomms3059

[27] V. Narasimhachar, S. Assad, F. C. Binder, J. Thompson, B. Yadin, and M. Gu, Thermodynamic resources in continuous-variable quantum systems, npj Quantum Inf. 7, 9 (2021).
https:/​/​doi.org/​10.1038/​s41534-020-00342-6

[28] A. Serafini, M. Lostaglio, S. Longden, U. Shackerley-Bennett, C.-Y. Hsieh, and G. Adesso, Gaussian thermal operations and the limits of algorithmic cooling, Phys. Rev. Lett. 124, 010602 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.010602

[29] S. Bartlett, T. Rudolph, and R. Spekkens, Reference frames, superselection rules, and quantum information, Rev. Mod. Phys. 79, 55 (2007).
https:/​/​doi.org/​10.1103/​RevModPhys.79.555

[30] I. Marvian, Symmetry, Asymmetry and Quantum Information, Ph.D. thesis, UWSpace, 2012.
http:/​/​hdl.handle.net/​10012/​7088

[31] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).
https:/​/​doi.org/​10.1103/​RevModPhys.86.419

[32] R. Uola, A. C. S. Costa, H. C. Nguyen, and O. G$\ddot{\rm u}$hne, Quantum steering, Rev. Mod. Phys. 92, 015001 (2020).
https:/​/​doi.org/​10.1103/​RevModPhys.92.015001

[33] D. Cavalcanti and P. Skrzypczyk, Quantum steering: a review with focus on semidefinite programming, Rep. Prog. Phys. 80, 024001 (2017).
https:/​/​doi.org/​10.1088/​1361-6633/​80/​2/​024001

[34] B. Regula, Convex geometry of quantum resource quantification, J. Phys. A: Math. Theor. 51, 045303 (2018).
https:/​/​doi.org/​10.1088/​1751-8121/​aa9100

[35] Z.-W. Liu, X. Hu, and S. Lloyd, Resource destroying maps, Phys. Rev. Lett. 118, 060502 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.060502

[36] A. Anshu, M.-H. Hsieh, and R. Jain, Quantifying resources in general resource theory with catalysts, Phys. Rev. Lett. 121, 190504 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.121.190504

[37] Z.-W. Liu, K. Bu, and R. Takagi, One-shot operational quantum resource theory, Phys. Rev. Lett. 123, 020401 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.020401

[38] K. Fang and Z.-W. Liu, No-go theorems for quantum resource purification, Phys. Rev. Lett. 125, 060405 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.060405

[39] R. Takagi and B. Regula, General resource theories in quantum mechanics and beyond: operational characterization via discrimination tasks, Phys. Rev. X 9, 031053 (2019).
https:/​/​doi.org/​10.1103/​PhysRevX.9.031053

[40] R. Takagi, B. Regula, K. Bu, Z.-W. Liu, and G. Adesso, Operational advantage of quantum resources in subchannel discrimination, Phys. Rev. Lett. 122, 140402 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.140402

[41] B.Regula, K. Bu, R. Takagi, and Z.-W. Liu, Benchmarking one-shot distillation in general quantum resource theories, Phys. Rev. A 101, 062315 (2020).
https:/​/​doi.org/​10.1103/​PhysRevA.101.062315

[42] C. Sparaciari, L. del Rio, C. M. Scandolo, P. Faist, and J. Oppenheim, The first law of general quantum resource theories, Quantum 4, 259 (2020).
https:/​/​doi.org/​10.22331/​q-2020-04-30-259

[43] R. Uola, T. Kraft, J. Shang, X.-D. Yu, and O. G$\ddot{\rm u}$hne, Quantifying quantum resources with conic programming, Phys. Rev. Lett. 122, 130404 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.130404

[44] M. Walter, B. Doran, D. Gross, and M. Christandl, Entanglement polytopes: multiparticle entanglement from single-particle information, Science 340, 1205 -1208 (2013).
https:/​/​doi.org/​10.1126/​science.1232957

[45] J. Tura, R. Augusiak, A. B. Sainz, T. Vértesi, M. Lewenstein, and A. Ací n, Detecting nonlocality in many-body quantum states. Science 344, 1256 (2014).
https:/​/​doi.org/​10.1126/​science.1247715

[46] G. N. M. Tabia, K.-S. Chen, C.-Y. Hsieh, Y.-C. Yin, and Y.-C. Liang, Entanglement transitivity problems, npj Quantum Inf 8, 98 (2022).
https:/​/​doi.org/​10.1038/​s41534-022-00616-1

[47] J.-D. Bancal, S. Pironio, A. Acín, Y.-C. Liang, V. Scarani, and N. Gisin, Quantum non-locality based on finite-speed causal influences leads to superluminal signalling, Nat. Phys. 8, 864 (2012).
https:/​/​doi.org/​10.1038/​nphys2460

[48] T. J. Barnea, J.-D. Bancal, Y.-C. Liang, and N. Gisin, Tripartite quantum state violating the hidden-influence constraints. Phys. Rev. A. 88, 022123 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.88.022123

[49] S. Coretti, E. Hänggi, and S. Wolf, Nonlocality is transitive, Phys. Rev. Lett. 107, 100402 (2011).
https:/​/​doi.org/​10.1103/​PhysRevLett.107.100402

[50] W. D$\ddot{\rm u}$r, G. Vidal, and J. I. Cirac, Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62, 062314 (2000).
https:/​/​doi.org/​10.1103/​PhysRevA.62.062314

[51] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, 70, 1895 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.70.1895

[52] P. Skrzypczyk and N. Linden, Robustness of measurement, discrimination games, and accessible information, Phys. Rev. Lett. 122, 140403 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.140403

[53] N. Linden and P. Skrzypczyk, How to use arbitrary measuring devices to perform almost perfect measurements, arXiv:2203.02593.
https:/​/​doi.org/​10.48550/​arXiv.2203.02593
arXiv:2203.02593

[54] D. Rosset, F. Buscemi, and Y.-C. Liang, A resource theory of quantum memories and their faithful verification with minimal assumptions, Phys. Rev. X 8, 021033 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.021033

[55] S. B$\ddot{\rm a}$uml, S. Das, X. Wang, and M. M. Wilde, Resource theory of entanglement for bipartite quantum channels. arXiv:1907.04181.
arXiv:1907.04181

[56] Z.-W. Liu and A. Winter, Resource theories of quantum channels and the universal role of resource erasure, arXiv:1904.04201.
arXiv:1904.04201

[57] Y. Liu and X. Yuan, Operational resource theory of quantum channels, Phys. Rev. Res. 2, 012035(R) (2020).
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.012035

[58] L. Li, K. Bu, and Z.-W. Liu, Quantifying the resource content of quantum channels: an operational approach, Phys. Rev. A 101, 022335 (2020).
https:/​/​doi.org/​10.1103/​PhysRevA.101.022335

[59] H.-Y. Ku, J. Kadlec, A. $\check{\rm C}$ernoch, M. T. Quintino, W. Zhou, K. Lemr, N. Lambert, A. Miranowicz, S.-L. Chen, F. Nori, and Y.-N. Chen, Quantifying Quantumness of Channels Without Entanglement, PRX Quantum 3, 020338 (2022).
https:/​/​doi.org/​10.1103/​PRXQuantum.3.020338

[60] L. B. Vieira, H.-Y. Ku, C. Budroni, Entanglement-breaking channels are a quantum memory resource, arXiv:2402.16789.
https:/​/​doi.org/​10.48550/​arXiv.2402.16789
arXiv:2402.16789

[61] B. Stratton, C.-Y. Hsieh, and P. Skrzypczyk, Dynamical Resource Theory of Informational Nonequilibrium Preservability, Phys. Rev. Lett. 132, 110202 (2024).
https:/​/​doi.org/​10.1103/​PhysRevLett.132.110202

[62] C.-Y. Hsieh, Y.-C. Liang, and R.-K. Lee, Quantum steerability: characterization, quantification, superactivation, and unbounded amplification, Phys. Rev. A 94, 062120 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.062120

[63] M. T. Quintino, M. Huber, and N. Brunner, Superactivation of quantum steering, Phys. Rev. A 94, 062123 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.062123

[64] H.-Y. Ku, C.-Y. Hsieh, S.-L. Chen, Y.-N. Chen, and C. Budroni, Complete classification of steerability under local filters and its relation with measurement incompatibility, Nat. Commun. 13, 4973 (2022).
https:/​/​doi.org/​10.1038/​s41467-022-32466-y

[65] H.-Y. Ku, C.-Y. Hsieh, and C. Budroni, Measurement incompatibility cannot be stochastically distilled, arXiv:2308.02252.
https:/​/​doi.org/​10.48550/​arXiv.2308.02252
arXiv:2308.02252

[66] C.-Y. Hsieh, H.-Y. Ku, and C. Budroni, Characterisation and fundamental limitations of irreversible stochastic steering distillation, arXiv:2309.06191.
https:/​/​doi.org/​10.48550/​arXiv.2309.06191
arXiv:2309.06191

[67] C.-Y. Hsieh, S.-L. Chen, A thermodynamic approach to quantifying incompatible instruments, arXiv:2402.13080.
https:/​/​doi.org/​10.48550/​arXiv.2402.13080
arXiv:2402.13080

[68] C.-Y. Hsieh, M. Gessner, General quantum resources provide advantages in work extraction tasks, arXiv:2403.18753.
https:/​/​doi.org/​10.48550/​arXiv.2403.18753
arXiv:2403.18753

[69] P. Skrzypczyk, I. $\check{\rm S}$upić, and D. Cavalcanti All sets of incompatible measurements give an advantage in quantum state discrimination, Phys. Rev. Lett. 122, 130403 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.130403

[70] F. Buscemi, E. Chitambar, and W. Zhou, Complete resource theory of quantum incompatibility as quantum programmability, Phys. Rev. Lett. 124, 120401 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.120401

[71] F. Buscemi, K. Kobayashi, S. Minagawa, P. Perinotti, and A. Tosini, Unifying different notions of quantum incompatibility into a strict hierarchy of resource theories of communication, Quantum 7, 1035 (2023).
https:/​/​doi.org/​10.22331/​q-2023-06-07-1035

[72] N. Linden, S. Popescu, and W. K. Wootters, Almost Every Pure State of Three Qubits Is Completely Determined by Its Two-Particle Reduced Density Matrices, Phys. Rev. Lett. 89, 207901 (2002).
https:/​/​doi.org/​10.1103/​PhysRevLett.89.207901

[73] N. Linden and W. K. Wootters, The Parts Determine the Whole in a Generic Pure Quantum State, Phys. Rev. Lett. 89, 277906 (2002).
https:/​/​doi.org/​10.1103/​PhysRevLett.89.277906

[74] X.-D. Yu, T. Simnacher, N. Wyderka, H. C. Nguyen, and O. Gühne, A complete hierarchy for the pure state marginal problem in quantum mechanics, Nat. Commun. 12, 1012 (2021).
https:/​/​doi.org/​10.1038/​s41467-020-20799-5

[75] C.-Y. Hsieh, M. Lostaglio, and A. Acín, Quantum channel marginal problem, Phys. Rev. Res. 4, 013249 (2022).
https:/​/​doi.org/​10.1103/​PhysRevResearch.4.013249

[76] S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004).

[77] R. Uola, T. Kraft, and A. A. Abbott, Quantification of quantum dynamics with input-output games, Phys. Rev. A 101, 052306 (2020).
https:/​/​doi.org/​10.1103/​PhysRevA.101.052306

[78] B. G$\ddot{\rm a}$rtner and J. Matou$\check{\rm s}$ek, Approximation Algorithms and Semidefinite Programming (Springer-Verlag, Berlin, Heidelberg, 2012).

[79] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, UK, 2000).

[80] D. Beckman, D. Gottesman, M. A. Nielsen, and J. Preskill, Causal and localizable quantum operations, Phys. Rev. A 64, 052309 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.64.052309

[81] M. Piani, M. Horodecki, P. Horodecki, and R. Horodecki, On quantum non-signalling boxes, Phys. Rev. A 74, 012305 (2006).
https:/​/​doi.org/​10.1103/​PhysRevA.74.012305

[82] T. Eggeling, D. Schlingemann, and R. F. Werner, Semicausal operations are semilocalizable, EPL 57, 782 (2002).
https:/​/​doi.org/​10.1209/​epl/​i2002-00579-4

[83] R. Duan and A. Winter, No-signalling-assisted zero-error capacity of quantum channels and an information theoretic interpretation of the Lovász number, IEEE Trans. Inf. Theory 62, 891 (2016).
https:/​/​doi.org/​10.1109/​TIT.2015.2507979

[84] N. Datta, Min- and max-relative entropies and a new entanglement monotone, IEEE Trans. Inf. Theory 55, 2816 (2009).
https:/​/​doi.org/​10.1109/​TIT.2009.2018325

[85] W. Hall, Compatibility of subsystem states and convex geometry, Phys. Rev. A 75, 032102 (2007).
https:/​/​doi.org/​10.1103/​PhysRevA.75.032102

[86] K.-S. Chen, C.-Y. Hsieh, G. N. M. Tabia, and Y.-C. Yin, and Y.-C. Liang, Nonlocality transitivity for quantum states, in preparation.

[87] C.-Y. Hsieh, G. N. M. Tabia, and Y.-C. Liang, Resource transitivity, in preparation.

[88] X. Wu, G.-J. Tian, W. Huang, Q.-Y. Wen, S.-J. Qin, and F. Gao, Determination of $W$ states equivalent under stochastic local operations and classical communication by their bipartite reduced density matrices with tree form, Phys. Rev. A 90, 012317 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.90.012317

[89] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Fundamental limits of repeaterless quantum communications, Nat. Commun. 8, 15043 (2017).
https:/​/​doi.org/​10.1038/​ncomms15043

[90] J.-H. Hsieh, S.-H. Chen, and C.-M. Li, Quantifying quantum-mechanical processes, Sci. Rep. 7, 13588 (2017).
https:/​/​doi.org/​10.1038/​s41598-017-13604-9

[91] M. G. Díaz, K. Fang, X. Wang, M. Rosati, M. Skotiniotis, J. Calsamiglia, and A. Winter, Using and reusing coherence to realize quantum processes, Quantum 2, 100 (2018).
https:/​/​doi.org/​10.22331/​q-2018-10-19-100

[92] M. M. Wilde, Entanglement cost and quantum channel simulation, Phys. Rev. A 98, 042338 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.042338

[93] J. R. Seddon and E. Campbell, Quantifying magic for multi-qubit operations, Proc. R. Soc. A 475, 20190251 (2019).
https:/​/​doi.org/​10.1098/​rspa.2019.0251

[94] G. Gour, Comparison of quantum channels by superchannels, IEEE Trans. Inf. Theory 65, 5880 (2019).
https:/​/​doi.org/​10.1109/​TIT.2019.2907989

[95] G. Gour and A. Winter, How to quantify a dynamical resource? Phys. Rev. Lett. 123, 150401 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.150401

[96] G. Gour and C. M. Scandolo, The entanglement of a bipartite channel. Phys. Rev. A 103, 062422 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.103.062422

[97] G. Gour and C. M. Scandolo, Dynamical entanglement, Phys. Rev. Lett. 125, 180505 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.180505

[98] R. Takagi, K. Wang, and M. Hayashi, Application of the resource theory of channels to communication scenarios, Phys. Rev. Lett. 124, 120502 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.120502

[99] T. Theurer, D. Egloff, L. Zhang, and M. B. Plenio, Quantifying operations with an application to coherence, Phys. Rev. Lett. 122, 190405 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.190405

[100] G. Saxena, E. Chitambar, and G. Gour, Dynamical resource theory of quantum coherence, Phys. Rev. Res. 2, 023298 (2020).
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.023298

[101] C.-Y. Hsieh, Resource preservability, Quantum 4, 244 (2020).
https:/​/​doi.org/​10.22331/​q-2020-03-19-244

[102] C.-Y. Hsieh, Communication, dynamical resource theory, and thermodynamics, PRX Quantum 2, 020318 (2021).
https:/​/​doi.org/​10.1103/​PRXQuantum.2.020318

[103] C.-Y. Hsieh, Quantifying classical information transmission by thermodynamics, arXiv:2201.12110.
arXiv:2201.12110

[104] C.-Y. Hsieh, G. N. M. Tabia, and Y.-C. Liang, Dynamical resource marginal problems, in preparation.

[105] E. Haapasalo, T. Kraft, N. Miklin, and R. Uola, Quantum marginal problem and incompatibility, Quantum 5, 476 (2021).
https:/​/​doi.org/​10.22331/​q-2021-06-15-476

[106] C.-Y. Hsieh, R. Uola, and P. Skrzypczyk, Quantum complementarity: A novel resource for unambiguous exclusion and encryption, arXiv:2309.11968.
https:/​/​doi.org/​10.48550/​arXiv.2309.11968
arXiv:2309.11968

[107] A. F. Ducuara and P. Skrzypczyk, Characterization of quantum betting tasks in terms of Arimoto mutual information, PRX Quantum 3, 020366 (2022).
https:/​/​doi.org/​10.1103/​PRXQuantum.3.020366

[108] A. F. Ducuara, P. Skrzypczyk, F. Buscemi, P. Sidajaya, and V. Scarani, Maxwell’s Demon Walks into Wall Street: Stochastic Thermodynamics Meets Expected Utility Theory, Phys. Rev. Lett. 131, 197103 (2023).
https:/​/​doi.org/​10.1103/​PhysRevLett.131.197103

[109] A. F. Ducuara and P. Skrzypczyk, Fundamental connections between utility theories of wealth and information theory, arXiv:2306.07975.
https:/​/​doi.org/​10.48550/​arXiv.2306.07975
arXiv:2306.07975

[110] C.-Y. Hsieh, G. N. M. Tabia, Y.-C. Yin, and Y.-C. Liang, Resource Marginal Problems, arXiv:2202.03523v1 (2022).
arXiv:2202.03523

[111] D. P. Bertsekas, Lecture Slides on Convex Analysis And Optimization, https:/​/​ocw.mit.edu/​courses/​electrical-engineering-and-computer-science/​6-253-convex-analysis-and-optimization-spring-2012/​lecture-notes/​.
https:/​/​ocw.mit.edu/​courses/​electrical-engineering-and-computer-science/​6-253-convex-analysis-and-optimization-spring-2012/​lecture-notes/​

[112] D. P. Bertsekas, Convex Optimization Theory (Athena Scientific Belmont, 2009).

[113] C.-Y. Hsieh, Study on Nonlocality, Steering, Teleportation, and Their Superactivation, Master thesis, National Tsing Hua University, 2016.
https:/​/​hdl.handle.net/​11296/​pajsp5

[114] T. M. Apostol, Mathematical Analysis: A Modern Approach To Advanced Calculus (2nd edition, Pearson press, 1973).

[115] J. R. Munkres, Topology (2nd edition, Prentice Hall press, 2000).

[116] S. L. Braunstein, A. Mann, and M. Revzen, Maximal violation of Bell inequalities for mixed states, Phys. Rev. Lett. 68, 3259 (1992).
https:/​/​doi.org/​10.1103/​PhysRevLett.68.3259

[117] B. Baumgartner, An inequality for the trace of matrix products, using absolute values, arXiv:1106.6189.
arXiv:1106.6189

[118] J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).
https:/​/​doi.org/​10.1017/​9781316848142

Cited by

[1] Huan-Yu Ku, Chung-Yun Hsieh, and Costantino Budroni, "Measurement incompatibility cannot be stochastically distilled", arXiv:2308.02252, (2023).

[2] Chung-Yun Hsieh, Matteo Lostaglio, and Antonio Acín, "Quantum channel marginal problem", Physical Review Research 4 1, 013249 (2022).

[3] Chung-Yun Hsieh, Huan-Yu Ku, and Costantino Budroni, "Characterisation and fundamental limitations of irreversible stochastic steering distillation", arXiv:2309.06191, (2023).

[4] Chung-Yun Hsieh and Shin-Liang Chen, "A thermodynamic approach to quantifying incompatible instruments", arXiv:2402.13080, (2024).

[5] Chung-Yun Hsieh and Manuel Gessner, "General quantum resources provide advantages in work extraction tasks", arXiv:2403.18753, (2024).

[6] Gelo Noel M. Tabia, Kai-Siang Chen, Chung-Yun Hsieh, Yu-Chun Yin, and Yeong-Cherng Liang, "Entanglement transitivity problems", npj Quantum Information 8, 98 (2022).

The above citations are from SAO/NASA ADS (last updated successfully 2024-06-18 04:03:05). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-06-18 04:03:04).