Photonic entanglement with accelerated light

R. C. Souza Pimenta1, G. H. dos Santos1, A. B. Barreto1,2, L. C. Celeri3, and P. H. Souto Ribeiro1

1Departamento de Física, Universidade Federal de Santa Catarina, CEP 88040-900, Florianópolis, SC, Brazil
2Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS), $Campus$ Caxias do Sul, RS, Brazil
3QPequi Group, Institute of Physics, Federal University of Goiás, 74690-900, Goiânia, GO, Brazil

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Accelerated light has been demonstrated with laser light and diffraction. Within the diffracting field it is possible to identify a portion that carries most of the beam energy, which propagates in a curved trajectory as it would have been accelerated by a gravitational field for instance. Here, we analyze the effects of this kind of acceleration over the entanglement between twin beams produced in spontaneous parametric down-conversion. Our results show that acceleration does not affect entanglement significantly, under ideal conditions. The optical scheme introduced can be useful in the understanding of processes in the boundary between gravitation and quantum physics.

We performed an experiment to investigate the behavior of quantum correlations or entanglement between two light beams under acceleration. While light doesn't actually accelerate like massive objects, we can induce curved trajectories that mimic acceleration. Our findings indicate that quantum correlations or entanglement is preserved.

► BibTeX data

► References

[1] Stuart J. Freedman and John F. Clauser. ``Experimental test of local hidden-variable theories''. Phys. Rev. Lett. 28, 938–941 (1972).

[2] Alain Aspect, Jean Dalibard, and Gérard Roger. ``Experimental test of bell's inequalities using time-varying analyzers''. Phys. Rev. Lett. 49, 1804–1807 (1982).

[3] Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and Anton Zeilinger. ``Violation of bell's inequality under strict einstein locality conditions''. Phys. Rev. Lett. 81, 5039–5043 (1998).

[4] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li, Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan. ``Quantum computational advantage using photons''. Science 370, 1460–1463 (2020).

[5] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter, and Anton Zeilinger. ``Experimental quantum teleportation''. Nature 390, 575–579 (1997).

[6] Danilo Zia, Nazanin Dehghan, Alessio D'Errico, Fabio Sciarrino, and Ebrahim Karimi. ``Interferometric imaging of amplitude and phase of spatial biphoton states''. Nature Photonics 17, 1009–1016 (2023).

[7] David C. Burnham and Donald L. Weinberg. ``Observation of simultaneity in parametric production of optical photon pairs''. Phys. Rev. Lett. 25, 84–87 (1970).

[8] Wolfgang Tittel and Gregor Weihs. ``Photonic entanglement for fundamental tests and quantum communication'' (2001). arXiv:quant-ph/​0107156.

[9] S.P. Walborn, C.H. Monken, S. Pádua, and P.H. Souto Ribeiro. ``Spatial correlations in parametric down-conversion''. Physics Reports 495, 87–139 (2010).

[10] Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. Zoller. ``Inseparability criterion for continuous variable systems''. Phys. Rev. Lett. 84, 2722–2725 (2000).

[11] Stefano Mancini, Vittorio Giovannetti, David Vitali, and Paolo Tombesi. ``Entangling macroscopic oscillators exploiting radiation pressure''. Phys. Rev. Lett. 88, 120401 (2002).

[12] John C. Howell, Ryan S. Bennink, Sean J. Bentley, and R. W. Boyd. ``Realization of the einstein-podolsky-rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion''. Phys. Rev. Lett. 92, 210403 (2004).

[13] Eduardo Martín-Martínez and Nicolas C Menicucci. ``Entanglement in curved spacetimes and cosmology''. Classical and Quantum Gravity 31, 214001 (2014).

[14] G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides. ``Observation of accelerating airy beams''. Phys. Rev. Lett. 99, 213901 (2007).

[15] Nikolaos K. Efremidis, Zhigang Chen, Mordechai Segev, and Demetrios N. Christodoulides. ``Airy beams and accelerating waves: an overview of recent advances''. Optica 6, 686–701 (2019).

[16] E. J. S. Fonseca, P. H. Souto Ribeiro, S. Pádua, and C. H. Monken. ``Quantum interference by a nonlocal double slit''. Phys. Rev. A 60, 1530–1533 (1999).

[17] C. H. Monken, P. H. Souto Ribeiro, and S. Pádua. ``Transfer of angular spectrum and image formation in spontaneous parametric down-conversion''. Phys. Rev. A 57, 3123–3126 (1998).

[18] Ayman F. Abouraddy, Patrick R. Stone, Alexander V. Sergienko, Bahaa E. A. Saleh, and Malvin C. Teich. ``Entangled-photon imaging of a pure phase object''. Phys. Rev. Lett. 93, 213903 (2004).

[19] M. V. Berry; N. L. Balazs. ``Nonspreading wave packets''. American Journal of Physics 47, 264–267 (1979).

[20] Chyi-Lung Lin, Meng-Jie Huang, and Te-Chih Hsiung. ``Nonspreading wave packets in a general potential v(x,t) in one dimension'' (2008). arXiv:0809.4105.

[21] Ohad Lib and Yaron Bromberg. ``Spatially entangled airy photons''. Opt. Lett. 45, 1399–1402 (2020).

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2024-05-26 15:15:48). On SAO/NASA ADS no data on citing works was found (last attempt 2024-05-26 15:15:49).