Quantum state preparation via engineered ancilla resetting

Daniel Alcalde Puente1,2, Felix Motzoi1, Tommaso Calarco1,2,3, Giovanna Morigi4, and Matteo Rizzi1,2

1Forschungszentrum Jülich, Institute of Quantum Control, Peter Grünberg Institut (PGI-8), 52425 Jülich, Germany
2Institute for Theoretical Physics, University of Cologne, 50937 Köln, Germany
3Dipartimento di Fisica e Astronomia, Universitá di Bologna, 40127 Bologna, Italy
4Theoretical Physics, Department of Physics, Saarland University, 66123 Saarbrücken, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


In this theoretical investigation, we examine the effectiveness of a protocol incorporating periodic quantum resetting for preparing ground states of frustration-free parent Hamiltonians. This protocol uses a steering Hamiltonian that enables local coupling between the system and ancillary degrees of freedom. At periodic intervals, the ancillary system is reset to its initial state. For infinitesimally short reset times, the dynamics can be approximated by a Lindbladian whose steady state is the target state. For finite reset times, however, the spin chain and the ancilla become entangled between reset operations. To evaluate the protocol, we employ Matrix Product State simulations and quantum trajectory techniques, focusing on the preparation of the spin-1 Affleck-Kennedy-Lieb-Tasaki state. Our analysis considers convergence time, fidelity, and energy evolution under different reset intervals. Our numerical results show that ancilla system entanglement is essential for faster convergence. In particular, there exists an optimal reset time at which the protocol performs best. Using a simple approximation, we provide insights into how to optimally choose the mapping operators applied to the system during the reset procedure. Furthermore, the protocol shows remarkable resilience to small deviations in reset time and dephasing noise. Our study suggests that stroboscopic maps using quantum resetting may offer advantages over alternative methods, such as quantum reservoir engineering and quantum state steering protocols, which rely on Markovian dynamics.

► BibTeX data

► References

[1] John Preskill. ``Quantum Computing in the NISQ era and beyond''. Quantum 2, 79 (2018).

[2] Jens Eisert. ``Entangling power and quantum circuit complexity''. Physical Review Letters 127, 020501 (2021). url: https:/​/​doi.org/​10.1103/​physrevlett.127.020501.

[3] Tameem Albash and Daniel A. Lidar. ``Adiabatic quantum computation''. Rev. Mod. Phys. 90, 015002 (2018).

[4] Pimonpan Sompet, Sarah Hirthe, Dominik Bourgund, Thomas Chalopin, Julian Bibo, Joannis Koepsell, Petar Bojović, Ruben Verresen, Frank Pollmann, Guillaume Salomon, et al. ``Realizing the symmetry-protected haldane phase in fermi–hubbard ladders''. NaturePages 1–5 (2022). url: https:/​/​doi.org/​10.1038/​s41586-022-04688-z.

[5] Zhi-Yuan Wei, Daniel Malz, and J. Ignacio Cirac. ``Efficient adiabatic preparation of tensor network states''. Physical Review Research 5 (2023).

[6] C. Schön, E. Solano, F. Verstraete, J. I. Cirac, and M. M. Wolf. ``Sequential generation of entangled multiqubit states''. Phys. Rev. Lett. 95, 110503 (2005).

[7] Felix Motzoi, Michael P Kaicher, and Frank K Wilhelm. ``Linear and logarithmic time compositions of quantum many-body operators''. Physical review letters 119, 160503 (2017). url: https:/​/​doi.org/​10.1103/​physrevlett.119.160503.

[8] J. F. Poyatos, J. I. Cirac, and P. Zoller. ``Quantum reservoir engineering with laser cooled trapped ions''. Phys. Rev. Lett. 77, 4728–4731 (1996).

[9] Susanne Pielawa, Giovanna Morigi, David Vitali, and Luiz Davidovich. ``Generation of einstein-podolsky-rosen-entangled radiation through an atomic reservoir''. Phys. Rev. Lett. 98, 240401 (2007).

[10] S. Diehl, A. Micheli, A. Kantian, B. Kraus, H. P. Büchler, and P. Zoller. ``Quantum states and phases in driven open quantum systems with cold atoms''. Nature Physics 4, 878–883 (2008).

[11] Frank Verstraete, Michael M. Wolf, and J. Ignacio Cirac. ``Quantum computation and quantum-state engineering driven by dissipation''. Nature Physics 5, 633–636 (2009).

[12] SG Schirmer and Xiaoting Wang. ``Stabilizing open quantum systems by markovian reservoir engineering''. Physical Review A 81, 062306 (2010).

[13] Giovanna Morigi, Jürgen Eschner, Cecilia Cormick, Yiheng Lin, Dietrich Leibfried, and David J. Wineland. ``Dissipative quantum control of a spin chain''. Phys. Rev. Lett. 115, 200502 (2015).

[14] Leo Zhou, Soonwon Choi, and Mikhail D Lukin. ``Symmetry-protected dissipative preparation of matrix product states''. Physical Review A 104, 032418 (2021). url: https:/​/​doi.org/​10.1103/​physreva.104.032418.

[15] Felix Motzoi, Eli Halperin, Xiaoting Wang, K Birgitta Whaley, and Sophie Schirmer. ``Backaction-driven, robust, steady-state long-distance qubit entanglement over lossy channels''. Physical Review A 94, 032313 (2016). url: https:/​/​doi.org/​10.1103/​physreva.94.032313.

[16] Kevin C. Smith, Eleanor Crane, Nathan Wiebe, and S.M. Girvin. ``Deterministic constant-depth preparation of the aklt state on a quantum processor using fusion measurements''. PRX Quantum 4 (2023).

[17] Nathanan Tantivasadakarn, Ryan Thorngren, Ashvin Vishwanath, and Ruben Verresen. ``Long-range entanglement from measuring symmetry-protected topological phases'' (2021). url: https:/​/​arxiv.org/​abs/​2112.01519.

[18] Clément Sayrin, Igor Dotsenko, Xingxing Zhou, Bruno Peaudecerf, Théo Rybarczyk, Sébastien Gleyzes, Pierre Rouchon, Mazyar Mirrahimi, Hadis Amini, Michel Brune, et al. ``Real-time quantum feedback prepares and stabilizes photon number states''. Nature 477, 73–77 (2011). url: https:/​/​doi.org/​10.1038/​nature10376.

[19] R Vijay, Chris Macklin, DH Slichter, SJ Weber, KW Murch, Ravi Naik, Alexander N Korotkov, and Irfan Siddiqi. ``Stabilizing rabi oscillations in a superconducting qubit using quantum feedback''. Nature 490, 77–80 (2012). url: https:/​/​doi.org/​10.1038/​nature11505.

[20] D Riste, M Dukalski, CA Watson, G De Lange, MJ Tiggelman, Ya M Blanter, Konrad W Lehnert, RN Schouten, and L DiCarlo. ``Deterministic entanglement of superconducting qubits by parity measurement and feedback''. Nature 502, 350–354 (2013). url: https:/​/​doi.org/​10.1038/​nature12513.

[21] Hideo Mabuchi. ``Continuous quantum error correction as classical hybrid control''. New Journal of Physics 11, 105044 (2009). url: https:/​/​doi.org/​10.1088/​1367-2630/​11/​10/​105044.

[22] Joseph Kerckhoff, Hendra I Nurdin, Dmitri S Pavlichin, and Hideo Mabuchi. ``Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction''. Physical Review Letters 105, 040502 (2010). url: https:/​/​doi.org/​10.1103/​physrevlett.105.040502.

[23] Leigh Martin, Felix Motzoi, Hanhan Li, Mohan Sarovar, and K Birgitta Whaley. ``Deterministic generation of remote entanglement with active quantum feedback''. Physical Review A 92, 062321 (2015). url: https:/​/​doi.org/​10.1103/​physreva.92.062321.

[24] Google Quantum AI. ``Suppressing quantum errors by scaling a surface code logical qubit''. Nature 614, 676–681 (2023). url: https:/​/​doi.org/​10.1038/​s41586-022-05434-1.

[25] Daniel Burgarth and Vittorio Giovannetti. ``Mediated homogenization''. Phys. Rev. A 76, 062307 (2007).

[26] Daniel Burgarth and Vittorio Giovannetti. ``Full control by locally induced relaxation''. Phys. Rev. Lett. 99, 100501 (2007).

[27] Anne Matthies, Mark Rudner, Achim Rosch, and Erez Berg. ``Programmable adiabatic demagnetization for systems with trivial and topological excitations'' (2022). url: https:/​/​arxiv.org/​abs/​2210.17256.

[28] Sthitadhi Roy, JT Chalker, IV Gornyi, and Yuval Gefen. ``Measurement-induced steering of quantum systems''. Physical Review Research 2, 033347 (2020). url: https:/​/​doi.org/​10.1103/​physrevresearch.2.033347.

[29] Cristopher Moore and Martin Nilsson. ``Parallel quantum computation and quantum codes''. SIAM journal on computing 31, 799–815 (2001). url: https:/​/​doi.org/​10.1137/​s0097539799355053.

[30] Rodney Van Meter and Kohei M Itoh. ``Fast quantum modular exponentiation''. Physical Review A 71, 052320 (2005). url: https:/​/​doi.org/​10.1103/​physreva.71.052320.

[31] Bhaskar Gaur, Edgard Muñoz-Coreas, and Himanshu Thapliyal. ``A logarithmic depth quantum carry-lookahead modulo (2n - 1) adder''. In Proceedings of the Great Lakes Symposium on VLSI 2023. Pages 125–130. (2023).

[32] Kurt Jacobs, Xiaoting Wang, and Howard M Wiseman. ``Coherent feedback that beats all measurement-based feedback protocols''. New Journal of Physics 16, 073036 (2014).

[33] Ángel Rivas, Susana F Huelga, and Martin B Plenio. ``Entanglement and non-markovianity of quantum evolutions''. Physical review letters 105, 050403 (2010). url: https:/​/​doi.org/​10.1103/​physrevlett.105.050403.

[34] Ruben Verresen, Roderich Moessner, and Frank Pollmann. ``One-dimensional symmetry protected topological phases and their transitions''. Physical Review B 96, 165124 (2017). url: https:/​/​doi.org/​10.1103/​physrevb.96.165124.

[35] Frank Pollmann and Ari M Turner. ``Detection of symmetry-protected topological phases in one dimension''. Physical review b 86, 125441 (2012). url: https:/​/​doi.org/​10.1103/​physrevb.86.125441.

[36] Gavin K Brennen and Akimasa Miyake. ``Measurement-based quantum computer in the gapped ground state of a two-body hamiltonian''. Physical review letters 101, 010502 (2008). url: https:/​/​doi.org/​10.1103/​physrevlett.101.010502.

[37] P. Filipowicz, J. Javanainen, and P. Meystre. ``Theory of a microscopic maser''. Phys. Rev. A 34, 3077–3087 (1986).

[38] John J. Slosser and Pierre Meystre. ``Tangent and cotangent states of the electromagnetic field''. Phys. Rev. A 41, 3867–3874 (1990).

[39] Hans-Jürgen Briegel and Berthold-Georg Englert. ``Macroscopic dynamics of a maser with non-poissonian injection statistics''. Phys. Rev. A 52, 2361–2375 (1995).

[40] Thomas Wellens, Andreas Buchleitner, Burkhard Kümmerer, and Hans Maassen. ``Quantum state preparation via asymptotic completeness''. Phys. Rev. Lett. 85, 3361–3364 (2000).

[41] Susanne Pielawa, Luiz Davidovich, David Vitali, and Giovanna Morigi. ``Engineering atomic quantum reservoirs for photons''. Phys. Rev. A 81, 043802 (2010).

[42] M Hartmann, D Poletti, M Ivanchenko, S Denisov, and P Hänggi. ``Asymptotic floquet states of open quantum systems: the role of interaction''. New Journal of Physics 19, 083011 (2017).

[43] M. Weidinger, B. T. H. Varcoe, R. Heerlein, and H. Walther. ``Trapping states in the micromaser''. Phys. Rev. Lett. 82, 3795–3798 (1999).

[44] B. T. H. Varcoe, S. Brattke, M. Weidinger, and H. Walther. ``Preparing pure photon number states of the radiation field''. Nature 403, 743–746 (2000).

[45] G. Morigi, J. I. Cirac, M. Lewenstein, and P. Zoller. ``Ground-state laser cooling beyond the lamb-dicke limit''. Europhysics Letters 39, 13 (1997).

[46] G. Morigi, J. I. Cirac, K. Ellinger, and P. Zoller. ``Laser cooling of trapped atoms to the ground state: A dark state in position space''. Phys. Rev. A 57, 2909–2914 (1998).

[47] Jean Dalibard, Yvan Castin, and Klaus Mølmer. ``Wave-function approach to dissipative processes in quantum optics''. Phys. Rev. Lett. 68, 580–583 (1992).

[48] R. Dum, P. Zoller, and H. Ritsch. ``Monte carlo simulation of the atomic master equation for spontaneous emission''. Phys. Rev. A 45, 4879–4887 (1992).

[49] T. S. Cubitt, F. Verstraete, W. Dür, and J. I. Cirac. ``Separable states can be used to distribute entanglement''. Phys. Rev. Lett. 91, 037902 (2003).

[50] Édgar Roldán and Shamik Gupta. ``Path-integral formalism for stochastic resetting: Exactly solved examples and shortcuts to confinement''. Phys. Rev. E 96, 022130 (2017).

[51] B. Mukherjee, K. Sengupta, and Satya N. Majumdar. ``Quantum dynamics with stochastic reset''. Phys. Rev. B 98, 104309 (2018).

[52] R. Yin and E. Barkai. ``Restart expedites quantum walk hitting times''. Phys. Rev. Lett. 130, 050802 (2023).

[53] Jutho Haegeman, J Ignacio Cirac, Tobias J Osborne, Iztok Pižorn, Henri Verschelde, and Frank Verstraete. ``Time-dependent variational principle for quantum lattices''. Physical review letters 107, 070601 (2011). url: https:/​/​doi.org/​10.1007/​3-540-10579-4_20.

[54] Andrew J. Daley. ``Quantum trajectories and open many-body quantum systems''. Advances in Physics 63, 77–149 (2014).

[55] Jülich Supercomputing Centre. ``Jureca: Data centric and booster modules implementing the modular supercomputing architecture at jülich supercomputing centre''. Journal of large-scale research facilities 7, A182 (2021).

[56] Artur Garcia-Saez, Valentin Murg, and Tzu-Chieh Wei. ``Spectral gaps of affleck-kennedy-lieb-tasaki hamiltonians using tensor network methods''. Physical Review B 88, 245118 (2013). url: https:/​/​doi.org/​10.1103/​physrevb.88.245118.

Cited by

[1] Lucas Marti, Refik Mansuroglu, and Michael J. Hartmann, "Efficient Quantum Cooling Algorithm for Fermionic Systems", arXiv:2403.14506, (2024).

[2] Samuel Morales, Yuval Gefen, Igor Gornyi, Alex Zazunov, and Reinhold Egger, "Engineering unsteerable quantum states with active feedback", Physical Review Research 6 1, 013244 (2024).

[3] Ruoyu Yin, Qingyuan Wang, Sabine Tornow, and Eli Barkai, "Restart uncertainty relation for monitored quantum dynamics", arXiv:2401.01307, (2024).

[4] Anish Acharya and Shamik Gupta, "Tight-binding model subject to conditional resets at random times", Physical Review E 108 6, 064125 (2023).

[5] Sayan Roy, Christian Otto, Raphaël Menu, and Giovanna Morigi, "Rise and fall of entanglement between two qubits in a non-Markovian bath", Physical Review A 108 3, 032205 (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2024-04-12 13:31:00). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-04-12 13:30:59).