Teleportation of Post-Selected Quantum States

Daniel Collins

H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Teleportation allows Alice to send a pre-prepared quantum state to Bob using only pre-shared entanglement and classical communication. Here we show that it is possible to teleport a state which is also $\it{post}$-selected. Post-selection of a state $\Phi$ means that after Alice has finished her experiment she performs a measurement and only keeps runs of the experiment where the measurement outcome is $\Phi$. We also demonstrate pre and post-selected $\it{port}$-based teleportation. Finally we use these protocols to perform instantaneous non-local quantum computation on pre and post-selected systems, and significantly reduce the entanglement required to instantaneously measure an arbitrary non-local variable of spatially separated pre and post-selected systems.

How can we send a quantum state from one place to another? It is tricky as quantum states tend to decohere, and the uncertainty principle prevents us from converting a quantum state to classical bits to be sent down our regular phone lines. $\textbf{Teleportation}$ is the solution. It uses pre-shared entanglement along with classical bits to send the quantum state, neatly avoiding decoherence and the uncertainty principle. Here we investigate teleporting a $\textbf{post-selected}$ state from one place to another. Post-selection means that we condition on a system being in a particular state at the end of the experiment. The post-selected state can be calculated at earlier times by retrodicting it $\textbf{backwards in time}$. Is it possible to teleport a state which retrodicts backwards in time, when we ourselves move forwards in time? We show how it can be done, and as an extension show how to perform instantaneous joint measurements and computations on post-selected multipartite systems.

► BibTeX data

► References

[1] C.H. Bennett, G Brassard, C Crepeau, R Jozsa, A Peres, and W.K. Wootters. ``Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels''. Phys. Rev. Lett. 70, 1895–1899 (1993).

[2] D Boschi, S Branca, F De Martini, L Hardy, and S Popescu. ``Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels''. Phys. Rev. Lett. 80, 1121–1125 (1998).

[3] D. Bouwmeester, J. M. Pan, K. Mattle, M. Eibl, H. Wein-furter, and A. Zeilinger. ``Experimental quantum teleportation''. Nature 390, 575–579 (1997).

[4] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein. ``Advances in quantum teleportation''. Nature Photonics 9, 641–652 (2015).

[5] Yakir Aharonov, Peter G. Bergmann, and Joel L. Lebowitz. ``Time symmetry in the quantum process of measurement''. Phys. Rev. 134, B1410–B1416 (1964).

[6] Yakir Aharonov, Sandu Popescu, Jeff Tollaksen, and Lev Vaidman. ``Multiple-time states and multiple-time measurements in quantum mechanics''. Phys. Rev. A 79, 052110 (2009).

[7] N Brunner, A Acin, D Collins, N Gisin, and V Scarani. ``Optical telecom networks as weak quantum measurements with postselection''. Phys. Rev. Lett. 91 (2003).

[8] CK Hong and L Mandel. ``Experimental realization of a localized one-photon state''. Phys. Rev. Lett. 56, 58–60 (1986).

[9] Y Aharanov, DZ Albert, and L Vaidman. ``How the result of a measurement of a component of the spin of a spin-1/​2 particle can turn out to be 100''. Phys. Rev. Lett. 60, 1351–1354 (1988).

[10] L. Vaidman. ``Weak value controversy''. Philos. Trans. R. Soc., A 375 (2017).

[11] Onur Hosten and Paul Kwiat. ``Observation of the spin hall effect of light via weak measurements''. Science 319, 787–790 (2008).

[12] P. Ben Dixon, David J. Starling, Andrew N. Jordan, and John C. Howell. ``Ultrasensitive beam deflection measurement via interferometric weak value amplification''. Phys. Rev. Lett. 102 (2009).

[13] Ralph Silva, Yelena Guryanova, Anthony J. Short, Paul Skrzypczyk, Nicolas Brunner, and Sandu Popescu. ``Connecting processes with indefinite causal order and multi-time quantum states''. New J. Phys. 19 (2017).

[14] Yakir Aharonov, Fabrizio Colombo, Sandu Popescu, Irene Sabadini, Daniele C. Struppa, and Jeff Tollaksen. ``Quantum violation of the pigeonhole principle and the nature of quantum correlations''. PNAS 113, 532–535 (2016).

[15] Yakir Aharonov, Sandu Popescu, Daniel Rohrlich, and Paul Skrzypczyk. ``Quantum cheshire cats''. New J. Phys. 15 (2013).

[16] Lev Vaidman and Izhar Nevo. ``Nonlocal measurements in the time-symmetric quantum mechanics''. Int. J. Mod. Phys. B 20 (2005).

[17] Seth Lloyd, Lorenzo Maccone, Raul Garcia-Patron, Vittorio Giovannetti, and Yutaka Shikano. ``Quantum mechanics of time travel through post-selected teleportation''. Phys. Rev. D 84 (2011).

[18] Satoshi Ishizaka and Tohya Hiroshima. ``Asymptotic teleportation scheme as a universal programmable quantum processor''. Phys. Rev. Lett. 101, 240501 (2008).

[19] Satoshi Ishizaka and Tohya Hiroshima. ``Quantum teleportation scheme by selecting one of multiple output ports''. Phys. Rev. A 79, 042306 (2009).

[20] Salman Beigi and Robert Koenig. ``Simplified instantaneous non-local quantum computation with applications to position-based cryptography''. New J. Phys. 13 (2011).

[21] Harry Buhrman, Lukasz Czekaj, Andrzej Grudka, Michal Horodecki, Pawel Horodecki, Marcin Markiewicz, Florian Speelman, and Sergii Strelchuk. ``Quantum communication complexity advantage implies violation of a bell inequality''. Proc. Natl. Acad. Sci. 113 (2015).

[22] Stefano Pirandola, Riccardo Laurenza, and Cosmo Lupo. ``Fundamental limits to quantum channel discrimination''. npj Quantum Information 5 (2018).

[23] Zhi-Wei Wang and Samuel L. Braunstein. ``Higher-dimensional performance of port-based teleportation''. Sci. Rep. 6 (2016).

[24] Michal Studzinski, Sergii Strelchuk, Marek Mozrzymas, and Michal Horodecki. ``Port-based teleportation in arbitrary dimension''. Sci. Rep. 7 (2017).

[25] Marek Mozrzymas, Michal Studzinski, Sergii Strelchuk, and Michal Horodecki. ``Optimal port-based teleportation''. New J. Phys. 20 (2018).

[26] Marek Mozrzymas, Michal Studzinski, and Michal Horodecki. ``A simplified formalism of the algebra of partially transposed permutation operators with applications''. J. Phys. A: Math. Theor. 51 (2018).

[27] Matthias Christandl, Felix Leditzky, Christian Majenz, Graeme Smith, Florian Speelman, and Michael Walter. ``Asymptotic performance of port-based teleportation''. Commun. Math. Phys. 381, 379–451 (2021).

[28] Piotr Kopszak, Marek Mozrzymas, Michal Studzinski, and Michal Horodecki. ``Multiport based teleportation - transmission of a large amount of quantum information''. Quantum 5 (2021).

[29] Michal Studzinski, Marek Mozrzymas, Piotr Kopszak, and Michal Horodecki. ``Efficient multi port-based teleportation schemes''. IEEE Trans. Inf. Theory 68, 7892–7912 (2022).

[30] Marek Mozrzymas, Michał Studziński, and Piotr Kopszak. ``Optimal Multi-port-based Teleportation Schemes''. Quantum 5, 477 (2021).

[31] L. Landau and R. Peierls. ``Erweiterung des unbestimmtheitsprinzips für die relativistische quantentheorie''. Zeitschrift für Physik 69, 56–69 (1931).

[32] Niels Henrik David Bohr and L. Rosenfeld. ``Zur frage der messbarkeit der elektromagnetischen feldgrössen''. Det Kgl. Danske Videnskabernes Selskab Mathematisk-fysiske Meddelelser 12, 1–65 (1933).

[33] Yakir Aharonov and David Z. Albert. ``States and observables in relativistic quantum field theories''. Phys. Rev. D 21, 3316–3324 (1980).

[34] Yakir Aharonov and David Z. Albert. ``Can we make sense out of the measurement process in relativistic quantum mechanics?''. Phys. Rev. D 24, 359–370 (1981).

[35] Yakir Aharonov and David Z. Albert. ``Is the usual notion of time evolution adequate for quantum-mechanical systems? i''. Phys. Rev. D 29, 223–227 (1984).

[36] Yakir Aharonov and David Z. Albert. ``Is the usual notion of time evolution adequate for quantum-mechanical systems? ii. relativistic considerations''. Phys. Rev. D 29, 228–234 (1984).

[37] Yakir Aharonov, David Z. Albert, and Lev Vaidman. ``Measurement process in relativistic quantum theory''. Phys. Rev. D 34, 1805–1813 (1986).

[38] Sandu Popescu and Lev Vaidman. ``Causality constraints on nonlocal quantum measurements''. Phys. Rev. A 49, 4331–4338 (1994).

[39] Berry Groisman and Lev Vaidman. ``Nonlocal variables with product-state eigenstates''. J. Phys. A: Math. Gen. 34, 6881 (2001).

[40] Berry Groisman and Benni Reznik. ``Measurements of semilocal and nonmaximally entangled states''. Phys. Rev. A 66, 022110 (2002).

[41] L Vaidman. ``Instantaneous measurement of nonlocal variables''. Phys. Rev. Lett. 90, 010402 (2003).

[42] S R Clark, A J Connor, D Jaksch, and S Popescu. ``Entanglement consumption of instantaneous nonlocal quantum measurements''. New J. Phys. 12, 083034 (2010).

[43] Alvin Gonzales and Eric Chitambar. ``Bounds on instantaneous nonlocal quantum computation''. IEEE Trans. Inf. Theory 66, 2951–2963 (2020).

[44] Ralph Silva, Yelena Guryanova, Nicolas Brunner, Noah Linden, Anthony J. Short, and Sandu Popescu. ``Pre- and postselected quantum states: Density matrices, tomography, and kraus operators''. Phys. Rev. A 89, 012121 (2014).

[45] Michal Sedlak, Alessandro Bisio, and Mario Ziman. ``Optimal probabilistic storage and retrieval of unitary channels''. Phys. Rev. Lett. 122 (2019).

[46] Lev Vaidman. ``Backward evolving quantum states''. J. Phys. A: Math. Theor. 40, 3275–3284 (2007).

[47] Charles H. Bennett and Stephen J. Wiesner. ``Communication via one- and two-particle operators on einstein-podolsky-rosen states''. Phys. Rev. Lett. 69, 2881–2884 (1992).

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2024-04-12 09:35:27). On SAO/NASA ADS no data on citing works was found (last attempt 2024-04-12 09:35:27).