Emergent parallel transport and curvature in Hermitian and non-Hermitian quantum mechanics

Chia-Yi Ju1,2, Adam Miranowicz3,4, Yueh-Nan Chen5,6,7, Guang-Yin Chen8, and Franco Nori4,9,10

1Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
2Center for Theoretical and Computational Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
3Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
4Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama, 351-0198, Japan
5Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan
6Center for Quantum Frontiers of Research & Technology, NCKU, Tainan 70101, Taiwan
7Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
8Department of Physics, National Chung Hsing University, Taichung 40227, Taiwan
9Quantum Computing Center, RIKEN, Wakoshi, Saitama, 351-0198, Japan
10Physics Department, University of Michigan, Ann Arbor, MI 48109-1040, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Studies have shown that the Hilbert spaces of non-Hermitian systems require nontrivial metrics. Here, we demonstrate how evolution dimensions, in addition to time, can emerge naturally from a geometric formalism. Specifically, in this formalism, Hamiltonians can be interpreted as a Christoffel symbol-like operators, and the Schroedinger equation as a parallel transport in this formalism. We then derive the evolution equations for the states and metrics along the emergent dimensions and find that the curvature of the Hilbert space bundle for any given closed system is locally flat. Finally, we show that the fidelity susceptibilities and the Berry curvatures of states are related to these emergent parallel transports.

In this study, we show that if a system depends on a continuous parameter, the quantum states vary with the parameter described by a Schroedinger-like equation, which formally resembles a parallel transport or evolution equation along the dimension described by the parameter. Moreover, we derive the governing equation for the geometry/metric of the underlying Hilbert space along the parameter-formed dimension. Rather than solely engaging in a formal study of the properties of these emergent dimensions, we also explore their applications across various fields in quantum physics.

► BibTeX data

► References

[1] C. M. Bender and S. Boettcher, Real Spectra in Non-Hermitian Hamiltonians Having $\mathcal{PT}$ Symmetry, Phys. Rev. Lett. 80, 5243 (1998).
https:/​/​doi.org/​10.1103/​PhysRevLett.80.5243

[2] C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70, 947 (2007).
https:/​/​doi.org/​10.1088/​0034-4885/​70/​6/​R03

[3] K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Beam Dynamics in $\cal{PT}$ Symmetric Optical Lattices, Phys. Rev. Lett. 100, 103904 (2008).
https:/​/​doi.org/​10.1103/​physrevlett.100.103904

[4] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, Non-Hermitian physics and $\cal{PT}$ symmetry, Nat. Phys. 14, 11 (2018).
https:/​/​doi.org/​10.1038/​nphys4323

[5] A. Mostafazadeh, Pseudo-Hermiticity and generalized $\mathcal{PT}$- and $\mathcal{CPT}$-symmetries, J. Math. Phys. 44, 974 (2003).
https:/​/​doi.org/​10.1063/​1.1539304

[6] A. Mostafazadeh, Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Meth. Mod. Phys. 7, 1191 (2010).
https:/​/​doi.org/​10.1142/​S0219887810004816

[7] B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang, Loss-induced suppression and revival of lasing, Science 346, 328 (2014).
https:/​/​doi.org/​10.1126/​science.1258004

[8] H. Jing, Ş. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, $\cal{PT}$-Symmetric Phonon Laser, Phys. Rev. Lett. 113, 053604 (2014).
https:/​/​doi.org/​10.1103/​physrevlett.113.053604

[9] C. M. Bender, $\cal{PT}$ symmetry in quantum physics: From a mathematical curiosity to optical experiments, Europhys. News 47, 17 (2016).
https:/​/​doi.org/​10.1051/​epn/​2016201

[10] C. M. Bender, D. C. Brody, and M. P. Müller, Hamiltonian for the Zeros of the Riemann Zeta Function, Phys. Rev. Lett. 118, 130201 (2017).
https:/​/​doi.org/​10.1103/​physrevlett.118.130201

[11] J. L. Miller, Exceptional points make for exceptional sensors, Phys. Today 70, 23 (2017).
https:/​/​doi.org/​10.1063/​pt.3.3717

[12] D. Leykam, K. Y. Bliokh, C. Huang, Y. Chong, and F. Nori, Edge Modes, Degeneracies, and Topological Numbers in Non-Hermitian Systems, Phys. Rev. Lett. 118, 040401 (2017).
https:/​/​doi.org/​10.1103/​physrevlett.118.040401

[13] F. Quijandría, U. Naether, S. K. Özdemir, F. Nori, and D. Zueco, $\cal{PT}$-symmetric circuit QED, Phys. Rev. A 97, 053846 (2018).
https:/​/​doi.org/​10.1103/​physreva.97.053846

[14] R. El-Ganainy, M. Khajavikhan, D. N. Christodoulides, and Ş. K. Özdemir, The dawn of non-Hermitian optics, Commun. Phys. 2, 37 (2019).
https:/​/​doi.org/​10.1038/​s42005-019-0130-z

[15] T. Liu, Y.-R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda, and F. Nori, Second-Order Topological Phases in Non-Hermitian Systems, Phys. Rev. Lett. 122, 076801 (2019).
https:/​/​doi.org/​10.1103/​physrevlett.122.076801

[16] Z.-Y. Ge, Y.-R. Zhang, T. Liu, S.-W. Li, H. Fan, and F. Nori, Topological band theory for non-Hermitian systems from the Dirac equation, Phys. Rev. B 100, 054105 (2019).
https:/​/​doi.org/​10.1103/​physrevb.100.054105

[17] M. Parto, Y. G. N. Liu, B. Bahari, M. Khajavikhan, and D. N. Christodoulides, Non-Hermitian and topological photonics: optics at an exceptional point, P. Soc. Photo-opt. Ins. 10, 403 (2020).
https:/​/​doi.org/​10.1515/​nanoph-2020-0434

[18] Y. Ashida, Z. Gong, and M. Ueda, Non-Hermitian physics, Adv. Phys. 69, 249 (2020).
https:/​/​doi.org/​10.1080/​00018732.2021.1876991

[19] M. Cirio, P.-C. Kuo, Y.-N. Chen, F. Nori, and N. Lambert, Canonical derivation of the fermionic influence superoperator, Phys. Rev. B 105, 035121 (2022).
https:/​/​doi.org/​10.1103/​physrevb.105.035121

[20] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93, 015005 (2021).
https:/​/​doi.org/​10.1103/​revmodphys.93.015005

[21] X. Zhang, T. Zhang, M.-H. Lu, and Y.-F. Chen, A review on non-Hermitian skin effect, Adva. Phys.: X 7, 2109431 (2022).
https:/​/​doi.org/​10.1080/​23746149.2022.2109431

[22] A. Fring, An Introduction to PT-Symmetric Quantum Mechanics-Time-Dependent Systems, J. Phys.: Conf. Ser. 2448, 012002 (2023).
https:/​/​doi.org/​10.1088/​1742-6596/​2448/​1/​012002

[23] Y.-L. Fang, J.-L. Zhao, D.-X. Chen, Y.-H. Zhou, Y. Zhang, Q.-C. Wu, C.-P. Yang, and F. Nori, Entanglement dynamics in anti-$\cal{PT}$-symmetric systems, Phys. Rev. Research 4, 033022 (2022).
https:/​/​doi.org/​10.1103/​physrevresearch.4.033022

[24] D.-X. Chen, Y. Zhang, J.-L. Zhao, Q.-C. Wu, Y.-L. Fang, C.-P. Yang, and F. Nori, Quantum state discrimination in a $\cal{PT}$-symmetric system, Phys. Rev. A 106, 022438 (2022).
https:/​/​doi.org/​10.1103/​physreva.106.022438

[25] A. Fring and T. Taira, Non-Hermitian quantum Fermi accelerator, Phys. Rev. A 108, 10.1103/​physreva.108.012222.
https:/​/​doi.org/​10.1103/​physreva.108.012222

[26] M. Znojil, Discrete-coordinate crypto-Hermitian quantum system controlled by time-dependent Robin boundary conditions, Phys. Scripta 99, 035250 (2024).
https:/​/​doi.org/​10.1088/​1402-4896/​ad298b

[27] M. Znojil, Time-dependent version of crypto-Hermitian quantum theory, Phys. Rev. D 78, 085003 (2008).
https:/​/​doi.org/​10.1103/​PhysRevD.78.085003

[28] M. Znojil, Three-Hilbert-Space Formulation of Quantum Mechanics, Sym. Integ. Geom.: Meth. App. 5, 001 (2009).
https:/​/​doi.org/​10.3842/​sigma.2009.001

[29] D. C. Brody, Biorthogonal quantum mechanics, J. Phys. A: Math. Theor. 47, 035305 (2013).
https:/​/​doi.org/​10.1088/​1751-8113/​47/​3/​035305

[30] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, Enhanced sensitivity at higher-order exceptional points, Nature (London) 548, 187 (2017).
https:/​/​doi.org/​10.1038/​nature23280

[31] K. Y. Bliokh, D. Leykam, M. Lein, and F. Nori, Topological non-Hermitian origin of surface Maxwell waves, Nat. Commun. 10, 580 (2019).
https:/​/​doi.org/​10.1038/​s41467-019-08397-6

[32] M. Znojil, Passage through exceptional point: Case study, Proc. Royal Soc. A 476, 20190831 (2020).
https:/​/​doi.org/​10.1098/​rspa.2019.0831

[33] M. Znojil, Paths of unitary access to exceptional points, J. Phys.: Conf. Ser. 2038, 012026 (2021).
https:/​/​doi.org/​10.1088/​1742-6596/​2038/​1/​012026

[34] C. M. Bender, J. Brod, A. Refig, and M. E. Reuter, The $\mathcal{C}$ operator in $\mathcal{PT}$-symmetric quantum theories, J. Phys A: Math. Gen. 37, 10139 (2004).
https:/​/​doi.org/​10.1088/​0305-4470/​37/​43/​009

[35] A. Mostafazadeh, Time dependent Hilbert spaces, geometric phases, and general covariance in quantum mechanics, Phys. Lett. A 320, 375 (2004).
https:/​/​doi.org/​10.1016/​j.physleta.2003.12.008

[36] C.-Y. Ju, A. Miranowicz, F. Minganti, C.-T. Chan, G.-Y. Chen, and F. Nori, Einstein's Quantum Elevator: Hermitization of Non-Hermitian Hamiltonians via the Vielbein Formalism, Phys. Rev. Research 4, 023070 (2022).
https:/​/​doi.org/​10.1103/​physrevresearch.4.023070

[37] C.-Y. Ju, A. Miranowicz, G.-Y. Chen, and F. Nori, Non-Hermitian Hamiltonians and no-go theorems in quantum information, Phys. Rev. A 100, 062118 (2019).
https:/​/​doi.org/​10.1103/​physreva.100.062118

[38] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Princeton University Press, 2017).
https:/​/​doi.org/​10.2307/​j.ctv301gk5

[39] R. M. Wald, General Relativity (The University of Chicago Press, 1984).
https:/​/​doi.org/​10.7208/​chicago/​9780226870373.001.0001

[40] D. Stoker and S. M. Carroll, Spacetime and Geometry (Cambridge University Press, 2019).
https:/​/​doi.org/​10.1017/​9781108770385

[41] P. Collier, A Beginner's Guide to Differential Forms (Incomprehensible Books, 2021) pp. 311–311.
https:/​/​doi.org/​10.4324/​9781003444145-22

[42] T. Needham, Visual Differential Geometry and Forms (Princeton University Press, 2021).
https:/​/​doi.org/​10.1515/​9780691219899

[43] M. H. Emam, Covariant Physics (Oxford University Press, 2021).
https:/​/​doi.org/​10.1093/​oso/​9780198864899.001.0001

[44] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Cambridge University Press, 2017).
https:/​/​doi.org/​10.1017/​9781108499996

[45] H. Mehri-Dehnavi and A. Mostafazadeh, Geometric phase for non-Hermitian Hamiltonians and its holonomy interpretation, J. Math. Phys. 49, 082105 (2008).
https:/​/​doi.org/​10.1063/​1.2968344

[46] M. Nakahara, Geometry, Topology and Physics, 2nd ed. (IOP Publishing, Bristol, 2003) pp. 244–307.
https:/​/​doi.org/​10.1201/​9781315275826-7

[47] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010).
https:/​/​doi.org/​10.1103/​RevModPhys.82.1959

[48] L. Wang, Y.-H. Liu, J. Imriška, P. N. Ma, and M. Troyer, Fidelity Susceptibility Made Simple: A Unified Quantum Monte Carlo Approach, Phys. Rev. X 5, 031007 (2015).
https:/​/​doi.org/​10.1103/​physrevx.5.031007

[49] Y.-C. Tzeng, C.-Y. Ju, G.-Y. Chen, and W.-M. Huang, Hunting for the non-Hermitian exceptional points with fidelity susceptibility, Phys. Rev. Res. 3, 013015 (2021).
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.013015

[50] Y.-T. Tu, I. Jang, P.-Y. Chang, and Y.-C. Tzeng, General properties of fidelity in non-Hermitian quantum systems with $\cal{PT}$ symmetry, Quantum 7, 960 (2022).
https:/​/​doi.org/​10.22331/​q-2023-03-23-960

[51] C. Nash and S. Sen, Topology and Geometry for Physicists (Dover Pub., New York, 2011).
https:/​/​doi.org/​10.1142/​9599

[52] J. Polchinski, String Theory (Cambridge University Press, 1998).
https:/​/​doi.org/​10.1017/​cbo9780511816079

[53] K. Becker, M. Becker, and J. H. Schwarz, String Theory and M-Theory (Cambridge University Press, 2006).
https:/​/​doi.org/​10.1017/​cbo9780511816086

[54] O. D. Stefano, A. Settineri, V. Macrì, L. Garziano, R. Stassi, S. Savasta, and F. Nori, Resolution of gauge ambiguities in ultrastrong-coupling cavity quantum electrodynamics, Nat. Phys. 15, 803 (2019).
https:/​/​doi.org/​10.1038/​s41567-019-0534-4

[55] L. Garziano, A. Settineri, O. D. Stefano, S. Savasta, and F. Nori, Gauge invariance of the Dicke and Hopfield models, Phys. Rev. A 102, 023718 (2020).
https:/​/​doi.org/​10.1103/​physreva.102.023718

[56] A. Settineri, O. D. Stefano, D. Zueco, S. Hughes, S. Savasta, and F. Nori, Gauge freedom, quantum measurements, and time-dependent interactions in cavity QED, Phys. Rev. Research 3, 023079 (2021).
https:/​/​doi.org/​10.1103/​physrevresearch.3.023079

[57] S. Savasta, O. D. Stefano, A. Settineri, D. Zueco, S. Hughes, and F. Nori, Gauge principle and gauge invariance in two-level systems, Phys. Rev. A 103, 053703 (2021).
https:/​/​doi.org/​10.1103/​physreva.103.053703

[58] W. Salmon, C. Gustin, A. Settineri, O. D. Stefano, D. Zueco, S. Savasta, F. Nori, and S. Hughes, Gauge-independent emission spectra and quantum correlations in the ultrastrong coupling regime of open system cavity-QED, P. Soc. Photo-opt. Ins. 11, 1573 (2022).
https:/​/​doi.org/​10.1515/​nanoph-2021-0718

[59] M. Born and V. Fock, Beweis des Adiabatensatzes, Z. Phys. 51, 165 (1928).
https:/​/​doi.org/​10.1007/​bf01343193

[60] M. V. Berry, Quantal Phase Factors Accompanying Adiabatic Changes, Proc. Royal Soc. London A 392, 45 (1984).
https:/​/​doi.org/​10.1142/​9789813221215_0006

[61] S. Nandy, A. Taraphder, and S. Tewari, Berry phase theory of planar Hall effect in topological insulators, Sci. Rep. 8, 14983 (2018).
https:/​/​doi.org/​10.1038/​s41598-018-33258-5

[62] S.-J. Gu, Fidelity approach to quantum phase transitions, International J. Mod. Phys. B 24, 4371 (2010).
https:/​/​doi.org/​10.1142/​s0217979210056335

[63] T. Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der mathematischen Wissenschaften (Springer, Berlin, 1976) pp. 479–515.
https:/​/​doi.org/​10.1007/​978-3-642-66282-9_9

[64] W. D. Heiss, Exceptional points of non-Hermitian operators, J. Phys A: Math. Gen. 37, 2455 (2004).
https:/​/​doi.org/​10.1088/​0305-4470/​37/​6/​034

[65] Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Parity–time symmetry and exceptional points in photonics, Nat. Mater. 18, 783 (2019).
https:/​/​doi.org/​10.1038/​s41563-019-0304-9

[66] D. Rattacaso, P. Vitale, and A. Hamma, Quantum geometric tensor away from equilibrium, J. Phys. Commun. 4, 055017 (2020).
https:/​/​doi.org/​10.1088/​2399-6528/​ab9505

[67] D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, Progress toward a theory of supergravity, Phys. Rev. D 13, 3214 (1976).
https:/​/​doi.org/​10.1103/​physrevd.13.3214

[68] P. van Nieuwenhuizen, Supergravity, Phys. Rep. 68, 189 (1981).
https:/​/​doi.org/​10.1016/​0370-1573(81)90157-5

[69] P. O. Kofman, O. V. Ivakhnenko, S. N. Shevchenko, and F. Nori, Majorana’s approach to nonadiabatic transitions validates the adiabatic-impulse approximation, Sci. Rep. 13, 5053 (2023).
https:/​/​doi.org/​10.1038/​s41598-023-31084-y

Cited by

[1] Ievgen I. Arkhipov, Adam Miranowicz, Fabrizio Minganti, Şahin K. Özdemir, and Franco Nori, "Dynamically crossing diabolic points while encircling exceptional curves: A programmable symmetric-asymmetric multimode switch", Nature Communications 14, 2076 (2023).

[2] Miloslav Znojil, "Hybrid form of quantum theory with non-Hermitian Hamiltonians", Physics Letters A 457, 128556 (2023).

[3] Miloslav Znojil, "Non-stationary quantum mechanics in hybrid non-Hermitian interaction representation", Physics Letters A 462, 128655 (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2024-04-12 05:52:04). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-04-12 05:52:02).