Photonic entanglement during a zero-g flight

Julius Arthur Bittermann1,2, Lukas Bulla1,3, Sebastian Ecker1,3, Sebastian Philipp Neumann1,3, Matthias Fink1,3, Martin Bohmann1,3, Nicolai Friis2,1, Marcus Huber2,1, and Rupert Ursin1,3

1Institute for Quantum Optics and Quantum Information – IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
2Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
3present address: Quantum Technology Laboratories GmbH, Clemens-Holzmeister-Straße 6/6, 1100 Vienna, Austria

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Quantum technologies have matured to the point that we can test fundamental quantum phenomena under extreme conditions. Specifically, entanglement, a cornerstone of modern quantum information theory, can be robustly produced and verified in various adverse environments. We take these tests further and implement a high-quality Bell experiment during a parabolic flight, transitioning from microgravity to hypergravity of 1.8 g while continuously observing Bell violation, with Bell-CHSH parameters between $S=-2.6202$ and $-2.7323$, an average of $\overline{S} = -2.680$, and average standard deviation of $\overline{\Delta S} = 0.014$. This violation is unaffected both by uniform and non-uniform acceleration. This experiment demonstrates the stability of current quantum communication platforms for space-based applications and adds an important reference point for testing the interplay of non-inertial motion and quantum information.

Entanglement is a form of correlation between two quantum systems that is, in a certain sense, stronger, or rather, more versatile than any form of classical correlation and which lies at the heart of modern quantum technologies. Moreover, this quantum feature wreaks havoc with our intuition regarding what is called “local realism”: the notion that measurements of distant objects are independent and can thus be carried out “locally” and that their results have a “reality” independently of the measurement itself. Indeed, experiments in the 70s, 80s, and 90s, recently recognized by the 2022 Nobel Prize in Physics, successfully demonstrated that entanglement can lead to the violation of so-called Bell inequalities, which would have to be satisfied if nature could be fully described with a local-realist view.

For a long time, the creation and verification of entanglement was nevertheless considered to be technologically challenging, often relying on fragile and easily disturbed optical setups. At the same time, entanglement has emerged as one of the central ingredients of quantum communication and forms a cornerstone of many nascent quantum technologies. Here, we present an experiment that showcases just how far the technology for entanglement-based quantum technologies has come and how resilient setups can be in the face of adverse conditions: we built and installed a setup for Bell tests into a commercial aircraft and continuously measured strong Bell-inequality violations throughout a sequence of several dozen parabolic flight manoeuvres. We show that even these transitions between different levels of acceleration, ranging from steady flight to strong accelerations nearly twice that of the gravitational pull on the surface of Earth, have no effect on the strength of the entanglement.

► BibTeX data

► References

[1] Stuart J. Freedman and John F. Clauser, Experimental Test of Local Hidden-Variable Theories, Phys. Rev. Lett. 28, 938 (1972).
https:/​/​doi.org/​10.1103/​PhysRevLett.28.938

[2] Alain Aspect, Philippe Grangier, and Gérard Roger, Experimental Tests of Realistic Local Theories via Bell's Theorem, Phys. Rev. Lett. 47, 460 (1981).
https:/​/​doi.org/​10.1103/​PhysRevLett.47.460

[3] Alain Aspect, Philippe Grangier, and Gérard Roger, Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities, Phys. Rev. Lett. 49, 91 (1982a).
https:/​/​doi.org/​10.1103/​PhysRevLett.49.91

[4] Alain Aspect, Jean Dalibard, and Gérard Roger, Experimental Test of Bell's Inequalities Using Time-Varying Analyzers, Phys. Rev. Lett. 49, 1804 (1982b).
https:/​/​doi.org/​10.1103/​PhysRevLett.49.1804

[5] Gregor Weihs, Thomas Jennewein, Christoph Simon, Harald Weinfurter, and Anton Zeilinger, Violation of Bell's Inequality under Strict Einstein Locality Conditions, Phys. Rev. Lett. 81, 5039 (1998), arXiv:quant-ph/​9810080.
https:/​/​doi.org/​10.1103/​PhysRevLett.81.5039
arXiv:quant-ph/9810080

[6] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, Thomas Jennewein, M. W. Mitchell, Paul G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, Strong Loophole-Free Test of Local Realism, Phys. Rev. Lett. 115, 250402 (2015), arXiv:1511.03189.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.250402
arXiv:1511.03189

[7] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature 526, 682 (2015), arXiv:1508.05949.
https:/​/​doi.org/​10.1038/​nature15759
arXiv:1508.05949

[8] Marissa Giustina, Marijn A. M. Versteegh, Sören Wengerowsky, Johannes Handsteiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Kofler, Jan-Åke Larsson, Carlos Abellán, Waldimar Amaya, Valerio Pruneri, Morgan W. Mitchell, Jörn Beyer, Thomas Gerrits, Adriana E. Lita, Lynden K. Shalm, Sae Woo Nam, Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, and Anton Zeilinger, Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons, Phys. Rev. Lett. 115, 250401 (2015), arXiv:1511.03190.
https:/​/​doi.org/​10.1103/​PhysRevLett.115.250401
arXiv:1511.03190

[9] Nicolai Friis, Oliver Marty, Christine Maier, Cornelius Hempel, Milan Holzäpfel, Petar Jurcevic, Martin B. Plenio, Marcus Huber, Christian Roos, Rainer Blatt, and Ben Lanyon, Observation of Entangled States of a Fully Controlled 20-Qubit System, Phys. Rev. X 8, 021012 (2018), arXiv:1711.11092.
https:/​/​doi.org/​10.1103/​PhysRevX.8.021012
arXiv:1711.11092

[10] Ming Gong, Ming-Cheng Chen, Yarui Zheng, Shiyu Wang, Chen Zha, Hui Deng, Zhiguang Yan, Hao Rong, Yulin Wu, Shaowei Li, Fusheng Chen, Youwei Zhao, Futian Liang, Jin Lin, Yu Xu, Cheng Guo, Lihua Sun, Anthony D. Castellano, Haohua Wang, Chengzhi Peng, Chao-Yang Lu, Xiaobo Zhu, and Jian-Wei Pan, Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor, Phys. Rev. Lett. 122, 110501 (2019), arXiv:1811.02292.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.110501
arXiv:1811.02292

[11] Ivan Pogorelov, Thomas Feldker, Christian D. Marciniak, Georg Jacob, Verena Podlesnic, Michael Meth, Vlad Negnevitsky, Martin Stadler, Kirill Lakhmanskiy, Rainer Blatt, Philipp Schindler, and Thomas Monz, Compact Ion-Trap Quantum Computing Demonstrator, PRX Quantum 2, 020343 (2021), arXiv:2101.11390.
https:/​/​doi.org/​10.1103/​PRXQuantum.2.020343
arXiv:2101.11390

[12] Gary J. Mooney, Gregory A. L. White, Charles D. Hill, and Lloyd C. L. Hollenberg, Whole-Device Entanglement in a 65-Qubit Superconducting Quantum Computer, Adv. Quantum Technol. 4, 2100061 (2021), arXiv:2102.11521.
https:/​/​doi.org/​10.1002/​qute.202100061
arXiv:2102.11521

[13] Xi-Lin Wang, Yi-Han Luo, He-Liang Huang, Ming-Cheng Chen, Zu-En Su, Chang Liu, Chao Chen, Wei Li, Yu-Qiang Fang, Xiao Jiang, Jun Zhang, Li Li, Nai-Le Liu, Chao-Yang Lu, and Jian-Wei Pan, 18-Qubit Entanglement with Six Photons' Three Degrees of Freedom, Phys. Rev. Lett. 120, 260502 (2018), arXiv:1801.04043.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.260502
arXiv:1801.04043

[14] Jessica Bavaresco, Natalia Herrera Valencia, Claude Klöckl, Matej Pivoluska, Paul Erker, Nicolai Friis, Mehul Malik, and Marcus Huber, Measurements in two bases are sufficient for certifying high-dimensional entanglement, Nat. Phys. 14, 1032 (2018), arXiv:1709.07344.
https:/​/​doi.org/​10.1038/​s41567-018-0203-z
arXiv:1709.07344

[15] James Schneeloch, Christopher C. Tison, Michael L. Fanto, Paul M. Alsing, and Gregory A. Howland, Quantifying entanglement in a 68-billion-dimensional quantum state space, Nat. Commun. 10, 2785 (2019), arXiv:1804.04515.
https:/​/​doi.org/​10.1038/​s41467-019-10810-z
arXiv:1804.04515

[16] Natalia Herrera Valencia, Vatshal Srivastav, Matej Pivoluska, Marcus Huber, Nicolai Friis, Will McCutcheon, and Mehul Malik, High-Dimensional Pixel Entanglement: Efficient Generation and Certification, Quantum 4, 376 (2020), arXiv:2004.04994.
https:/​/​doi.org/​10.22331/​q-2020-12-24-376
arXiv:2004.04994

[17] Nicolai Friis, Giuseppe Vitagliano, Mehul Malik, and Marcus Huber, Entanglement Certification From Theory to Experiment, Nat. Rev. Phys. 1, 72 (2019), arXiv:1906.10929.
https:/​/​doi.org/​10.1038/​s42254-018-0003-5
arXiv:1906.10929

[18] Sebastian Ecker, Frédéric Bouchard, Lukas Bulla, Florian Brandt, Oskar Kohout, Fabian Steinlechner, Robert Fickler, Mehul Malik, Yelena Guryanova, Rupert Ursin, and Marcus Huber, Overcoming Noise in Entanglement Distribution, Phys. Rev. X 9, 041042 (2019), arXiv:1904.01552.
https:/​/​doi.org/​10.1103/​PhysRevX.9.041042
arXiv:1904.01552

[19] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt, Proposed Experiment to Test Local Hidden-Variable Theories, Phys. Rev. Lett. 23, 880 (1969).
https:/​/​doi.org/​10.1103/​PhysRevLett.23.880

[20] Matthias Fink, Ana Rodriguez-Aramendia, Johannes Handsteiner, Abdul Ziarkash, Fabian Steinlechner, Thomas Scheidl, Ivette Fuentes, Jacques Pienaar, Timothy C Ralph, and Rupert Ursin, Experimental test of photonic entanglement in accelerated reference frames, Nat. Commun. 8, 1 (2017), arXiv:1608.02473.
https:/​/​doi.org/​10.1038/​ncomms15304
arXiv:1608.02473

[21] Juan Yin, Yuan Cao, Yu-Huai Li, Sheng-Kai Liao, Liang Zhang, Ji-Gang Ren, Wen-Qi Cai, Wei-Yue Liu, Bo Li, Hui Dai, Guang-Bing Li, Qi-Ming Lu, Yun-Hong Gong, Yu Xu, Shuang-Lin Li, Feng-Zhi Li, Ya-Yun Yin, Zi-Qing Jiang, Ming Li, Jian-Jun Jia, Ge Ren, Dong He, Yi-Lin Zhou, Xiao-Xiang Zhang, Na Wang, Xiang Chang, Zhen-Cai Zhu, Nai-Le Liu, Yu-Ao Chen, Chao-Yang Lu, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, and Jian-Wei Pan, Satellite-based entanglement distribution over 1200 kilometers, Science 356, 1140 (2017a), arXiv:1707.01339.
https:/​/​doi.org/​10.1126/​science.aan3211
arXiv:1707.01339

[22] Juan Yin, Yuan Cao, Yu-Huai Li, Ji-Gang Ren, Sheng-Kai Liao, Liang Zhang, Wen-Qi Cai, Wei-Yue Liu, Bo Li, Hui Dai, Ming Li, Yong-Mei Huang, Lei Deng, Li Li, Qiang Zhang, Nai-Le Liu, Yu-Ao Chen, Chao-Yang Lu, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, and Jian-Wei Pan, Satellite-to-Ground Entanglement-Based Quantum Key Distribution, Phys. Rev. Lett. 119, 200501 (2017b).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.200501

[23] Sara Restuccia, Marko Toroš, Graham M. Gibson, Hendrik Ulbricht, Daniele Faccio, and Miles J. Padgett, Photon Bunching in a Rotating Reference Frame, Phys. Rev. Lett. 123, 110401 (2019), arXiv:1906.03400.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.110401
arXiv:1906.03400

[24] Viktor Dodonov, Fifty Years of the Dynamical Casimir Effect, Physics 2, 67 (2020).
https:/​/​doi.org/​10.3390/​physics2010007

[25] David Edward Bruschi, Ivette Fuentes, and Jorma Louko, Voyage to Alpha Centauri: Entanglement degradation of cavity modes due to motion, Phys. Rev. D 85, 061701(R) (2012), arXiv:1105.1875.
https:/​/​doi.org/​10.1103/​PhysRevD.85.061701
arXiv:1105.1875

[26] Nicolai Friis, Antony R. Lee, and Jorma Louko, Scalar, spinor, and photon fields under relativistic cavity motion, Phys. Rev. D 88, 064028 (2013), arXiv:1307.1631.
https:/​/​doi.org/​10.1103/​PhysRevD.88.064028
arXiv:1307.1631

[27] Paul M. Alsing and Ivette Fuentes, Observer dependent entanglement, Class. Quantum Grav. 29, 224001 (2012), arXiv:1210.2223.
https:/​/​doi.org/​10.1088/​0264-9381/​29/​22/​224001
arXiv:1210.2223

[28] Nicolai Friis, Cavity mode entanglement in relativistic quantum information, Ph.D. thesis, University of Nottingham (2013), arXiv:1311.3536.
arXiv:1311.3536

[29] Christopher M. Wilson, Göran Johansson, Arsalan Pourkabirian, J. Robert Johansson, Timothy Duty, Franco Nori, and Per Delsing, Observation of the dynamical Casimir effect in a superconducting circuit, Nature 479, 376 (2011), arXiv:1105.4714.
https:/​/​doi.org/​10.1038/​nature10561
arXiv:1105.4714

[30] Marko Toroš, Sara Restuccia, Graham M. Gibson, Marion Cromb, Hendrik Ulbricht, Miles Padgett, and Daniele Faccio, Revealing and concealing entanglement with noninertial motion, Phys. Rev. A 101, 043837 (2020), arXiv:1911.06007.
https:/​/​doi.org/​10.1103/​PhysRevA.101.043837
arXiv:1911.06007

[31] Aitor Villar, Alexander Lohrmann, Xueliang Bai, Tom Vergoossen, Robert Bedington, Chithrabhanu Perumangatt, Huai Ying Lim, Tanvirul Islam, Ayesha Reezwana, Zhongkan Tang, Rakhitha Chandrasekara, Subash Sachidananda, Kadir Durak, Christoph F. Wildfeuer, Douglas Griffin, Daniel K. L. Oi, and Alexander Ling, Entanglement demonstration on board a nano-satellite, Optica 7, 734 (2020), arXiv:2006.14430.
https:/​/​doi.org/​10.1364/​OPTICA.387306
arXiv:2006.14430

[32] John W. Pratt and Jean D. Gibbons, Kolmogorov-Smirnov Two-Sample Tests, in Concepts of Nonparametric Theory. Springer Series in Statistics (Springer, New York, NY, USA, 1981) Chap. 7, pp. 318–344.
https:/​/​doi.org/​10.1007/​978-1-4612-5931-2_7

Cited by

[1] Julius Arthur Bittermann, Matthias Fink, Marcus Huber, and Rupert Ursin, "Non-inertial motion dependent entangled Bell-state", arXiv:2401.05186, (2024).

The above citations are from SAO/NASA ADS (last updated successfully 2024-07-15 16:50:12). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-07-15 16:50:11).