A new quantum machine learning algorithm: split hidden quantum Markov model inspired by quantum conditional master equation

Xiao-Yu Li1, Qin-Sheng Zhu2, Yong Hu2, Hao Wu2,3, Guo-Wu Yang4, Lian-Hui Yu2, and Geng Chen4

1School of Information and Software Engineering, University of Electronic Science and Technology of China, Cheng Du, 610054, China
2School of Physics, University of Electronic Science and Technology of China, Cheng Du, 610054, China
3Institute of Electronics and Information Industry Technology of Kash, Kash, 844000, China
4School of Computer Science and Engineering, University of Electronic Science and Technology of China, Cheng Du, 610054, China

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The Hidden Quantum Markov Model (HQMM) has significant potential for analyzing time-series data and studying stochastic processes in the quantum domain as an upgrading option with potential advantages over classical Markov models. In this paper, we introduced the split HQMM (SHQMM) for implementing the hidden quantum Markov process, utilizing the conditional master equation with a fine balance condition to demonstrate the interconnections among the internal states of the quantum system. The experimental results suggest that our model outperforms previous models in terms of scope of applications and robustness. Additionally, we establish a new learning algorithm to solve parameters in HQMM by relating the quantum conditional master equation to the HQMM. Finally, our study provides clear evidence that the quantum transport system can be considered a physical representation of HQMM. The SHQMM with accompanying algorithms present a novel method to analyze quantum systems and time series grounded in physical implementation.

In this work, starting from the framework of open-system physical theory and utilizing the quantum condition master equation derived from the introduction of detailed balance conditions, we theoretically establish the connection between the quantum condition master equation and the quantum hidden Markov model. Simultaneously, we propose a novel Splitting Quantum Markov Model (SHQMM). Excitingly, experimental results not only validate the superiority of quantum algorithms over classical algorithms but also demonstrate that our model outperforms previous HQMMs, offering broad applications in the study of internal states of quantum systems.

► BibTeX data

► References

[1] Juan I Cirac and Peter Zoller. ``Quantum computations with cold trapped ions''. Physical review letters 74, 4091 (1995).
https:/​/​doi.org/​10.1103/​physrevlett.74.4091

[2] Emanuel Knill, Raymond Laflamme, and Gerald J Milburn. ``A scheme for efficient quantum computation with linear optics''. nature 409, 46–52 (2001).
https:/​/​doi.org/​10.1038/​35051009

[3] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. ``Quantum machine learning''. Nature 549, 195–202 (2017).
https:/​/​doi.org/​10.1038/​nature23474

[4] M Cerezo, Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio, and Patrick J Coles. ``Challenges and opportunities in quantum machine learning''. Nature Computational Science 2, 567–576 (2022).
https:/​/​doi.org/​10.1038/​s43588-022-00311-3

[5] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S Kottmann, Tim Menke, et al. ``Noisy intermediate-scale quantum (nisq) algorithms (2021)'' (2021). arXiv:2101.08448v1.
arXiv:2101.08448v1

[6] Alán Aspuru-Guzik, Roland Lindh, and Markus Reiher. ``The matter simulation (r) evolution''. ACS central science 4, 144–152 (2018).
https:/​/​doi.org/​10.1021/​acscentsci.7b00550

[7] Iulia M Georgescu, Sahel Ashhab, and Franco Nori. ``Quantum simulation''. Reviews of Modern Physics 86, 153 (2014).
https:/​/​doi.org/​10.1103/​RevModPhys.86.153

[8] Markus Reiher, Nathan Wiebe, Krysta M Svore, Dave Wecker, and Matthias Troyer. ``Elucidating reaction mechanisms on quantum computers''. Proceedings of the National Academy of Sciences 114, 7555–7560 (2017).
https:/​/​doi.org/​10.1073/​pnas.1619152114

[9] Yudong Cao, Jhonathan Romero, and Alán Aspuru-Guzik. ``Potential of quantum computing for drug discovery''. IBM Journal of Research and Development 62, 6–1 (2018).
https:/​/​doi.org/​10.1147/​JRD.2018.2888987

[10] Roman Orus, Samuel Mugel, and Enrique Lizaso. ``Quantum computing for finance: Overview and prospects''. Reviews in Physics 4, 100028 (2019).
https:/​/​doi.org/​10.1016/​j.revip.2019.100028

[11] Pierre-Luc Dallaire-Demers, Jonathan Romero, Libor Veis, Sukin Sim, and Alán Aspuru-Guzik. ``Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer''. Quantum Science and Technology 4, 045005 (2019).
https:/​/​doi.org/​10.1088/​2058-9565/​ab3951

[12] Elizabeth Fons, Paula Dawson, Jeffrey Yau, Xiao-jun Zeng, and John Keane. ``A novel dynamic asset allocation system using Feature Saliency Hidden Markov models for smart beta investing''. Expert Systems with Applications 163, 113720 (2021).
https:/​/​doi.org/​10.1016/​j.eswa.2020.113720

[13] PV Chandrika, K Visalakshmi, and K Sakthi Srinivasan. ``Application of Hidden Markov Models in Stock Trading''. In 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). Pages 1144–1147. (2020).
https:/​/​doi.org/​10.1109/​ICACCS48705.2020.9074387

[14] Dima Suleiman, Arafat Awajan, and Wael Al Etaiwi. ``The use of hidden Markov model in natural arabic language processing: A survey''. Procedia computer science 113, 240–247 (2017).
https:/​/​doi.org/​10.1016/​j.procs.2017.08.363

[15] Hariz Zakka Muhammad, Muhammad Nasrun, Casi Setianingsih, and Muhammad Ary Murti. ``Speech recognition for English to Indonesian translator using hidden Markov model''. In 2018 International Conference on Signals and Systems (ICSigSys). Pages 255–260. IEEE (2018).
https:/​/​doi.org/​10.1109/​ICSIGSYS.2018.8372768

[16] Erik LL Sonnhammer, Gunnar Von Heijne, Anders Krogh, et al. ``A hidden Markov model for predicting transmembrane helices in protein sequences''. In LSMB 1998. Pages 175–182. (1998). url: https:/​/​cdn.aaai.org/​ISMB/​1998/​ISMB98-021.pdf.
https:/​/​cdn.aaai.org/​ISMB/​1998/​ISMB98-021.pdf

[17] Gary Xie and Jeanne M Fair. ``Hidden Markov Model: a shortest unique representative approach to detect the protein toxins, virulence factors and antibiotic resistance genes''. BMC Research Notes 14, 1–5 (2021).
https:/​/​doi.org/​10.21203/​rs.3.rs-185430/​v1

[18] Sean R Eddy. ``What is a hidden markov model?''. Nature biotechnology 22, 1315–1316 (2004).
https:/​/​doi.org/​10.1038/​nbt1004-1315

[19] Paul M Baggenstoss. ``A modified baum-welch algorithm for hidden markov models with multiple observation spaces''. IEEE Transactions on speech and audio processing 9, 411–416 (2001).
https:/​/​doi.org/​10.1109/​89.917686

[20] Aleksandar Kavcic and Jose MF Moura. ``The viterbi algorithm and markov noise memory''. IEEE Transactions on information theory 46, 291–301 (2000).
https:/​/​doi.org/​10.1109/​18.817531

[21] Todd K Moon. ``The expectation-maximization algorithm''. IEEE Signal processing magazine 13, 47–60 (1996).
https:/​/​doi.org/​10.1109/​79.543975

[22] Alex Monras, Almut Beige, and Karoline Wiesner. ``Hidden quantum Markov models and non-adaptive read-out of many-body states'' (2010). arXiv:1002.2337.
arXiv:1002.2337

[23] Siddarth Srinivasan, Geoff Gordon, and Byron Boots. ``Learning hidden quantum markov models''. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics. Volume 84 of Proceedings of Machine Learning Research, pages 1979–1987. PMLR (2018). url: https:/​/​proceedings.mlr.press/​v84/​srinivasan18a.html.
https:/​/​proceedings.mlr.press/​v84/​srinivasan18a.html

[24] Herbert Jaeger. ``Observable operator models for discrete stochastic time series''. Neural computation 12, 1371–1398 (2000).
https:/​/​doi.org/​10.1162/​089976600300015411

[25] Qing Liu, Thomas J. Elliott, Felix C. Binder, Carlo Di Franco, and Mile Gu. ``Optimal stochastic modeling with unitary quantum dynamics''. Phys. Rev. A 99, 062110 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.062110

[26] Thomas J Elliott. ``Memory compression and thermal efficiency of quantum implementations of nondeterministic hidden markov models''. Physical Review A 103, 052615 (2021).
https:/​/​doi.org/​10.1103/​PhysRevA.103.052615

[27] Sandesh Adhikary, Siddarth Srinivasan, Geoff Gordon, and Byron Boots. ``Expressiveness and Learning of Hidden Quantum Markov Models''. In International Conference on Artificial Intelligence and Statistics. Pages 4151–4161. (2020). url: http:/​/​proceedings.mlr.press/​v108/​adhikary20a/​adhikary20a.pdf.
http:/​/​proceedings.mlr.press/​v108/​adhikary20a/​adhikary20a.pdf

[28] Bo Jiang and Yu-Hong Dai. ``A framework of constraint preserving update schemes for optimization on Stiefel manifold''. Mathematical Programming 153, 535–575 (2015).
https:/​/​doi.org/​10.1007/​s10107-014-0816-7

[29] Vanio Markov, Vladimir Rastunkov, Amol Deshmukh, Daniel Fry, and Charlee Stefanski. ``Implementation and learning of quantum hidden markov models'' (2022). arXiv:2212.03796v2.
arXiv:2212.03796v2

[30] Xiantao Li and Chunhao Wang. ``Simulating markovian open quantum systems using higher-order series expansion'' (2022). arXiv:2212.02051v2.
arXiv:2212.02051v2

[31] Yoshitaka Tanimura. ``Stochastic Liouville, Langevin, Fokker–Planck, and master equation approaches to quantum dissipative systems''. Journal of the Physical Society of Japan 75, 082001 (2006).
https:/​/​doi.org/​10.1143/​JPSJ.75.082001

[32] Akihito Ishizaki and Graham R Fleming. ``Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach''. The Journal of chemical physics 130 (2009).
https:/​/​doi.org/​10.1063/​1.3155372

[33] Jinshuang Jin, Xiao Zheng, and YiJing Yan. ``Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach''. The Journal of chemical physics 128 (2008).
https:/​/​doi.org/​10.1063/​1.2938087

[34] Lewis A Clark, Wei Huang, Thomas M Barlow, and Almut Beige. ``Hidden quantum markov models and open quantum systems with instantaneous feedback''. In ISCS 2014 Interdisciplinary Symposium on Complex Systems. Pages 143–151. (2015).
https:/​/​doi.org/​10.1007/​978-3-319-10759-2$_$16

[35] Xin-Qi Li, JunYan Luo, Yong-Gang Yang, Ping Cui, and YiJing Yan. ``Quantum master-equation approach to quantum transport through mesoscopic systems''. Physical Review B 71, 205304 (2005).
https:/​/​doi.org/​10.1103/​PhysRevB.71.205304

[36] Michael J Kastoryano, Fernando GSL Brandão, András Gilyén, et al. ``Quantum thermal state preparatio'' (2023). arXiv:2303.18224.
arXiv:2303.18224

[37] Ming-Jie Zhao and Herbert Jaeger. ``Norm-observable operator models''. Neural computation 22, 1927–1959 (2010).
https:/​/​doi.org/​10.1162/​neco.2010.03-09-983

[38] Sandesh Adhikary, Siddarth Srinivasan, and Byron Boots. ``Learning quantum graphical models using constrained gradient descent on the stiefel manifold'' (2019). arXiv:2101.08448v1.
arXiv:2101.08448v1

[39] M. S. Vijayabaskar David R. Westhead, editor. ``Hidden markov models''. Volume 2, page 18. Humana New York, NY. (2017).
https:/​/​doi.org/​10.1007/​978-1-4939-6753-7

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2024-02-26 08:17:38). On SAO/NASA ADS no data on citing works was found (last attempt 2024-02-26 08:17:39).