Measurement-induced multipartite-entanglement regimes in collective spin systems

Pablo M. Poggi1,2 and Manuel H. Muñoz-Arias3

1Department of Physics, SUPA and University of Strathclyde, Glasgow G4 0NG, United Kingdom
2Center for Quantum Information and Control, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
3Institut Quantique and Département de Physique, Université de Sherbrooke, Sherbrooke, Quebec, J1K 2R1, Canada

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We study the competing effects of collective generalized measurements and interaction-induced scrambling in the dynamics of an ensemble of spin-1/2 particles at the level of quantum trajectories. This setup can be considered as analogous to the one leading to measurement-induced transitions in quantum circuits. We show that the interplay between collective unitary dynamics and measurements leads to three regimes of the average Quantum Fisher Information (QFI), which is a witness of multipartite entanglement, as a function of the monitoring strength. While both weak and strong measurements lead to extensive QFI density (i.e., individual quantum trajectories yield states displaying Heisenberg scaling), an intermediate regime of classical-like states emerges for all system sizes where the measurement effectively competes with the scrambling dynamics and precludes the development of quantum correlations, leading to sub-Heisenberg-limited states. We characterize these regimes and the crossovers between them using numerical and analytical tools, and discuss the connections between our findings, entanglement phases in monitored many-body systems, and the quantum-to-classical transition.

While interactions within a many-body quantum system tend to generate highly correlated states, performing local measurements will typically tend to disentangle the different subsystems. When combined, the interplay between these two effects often lead to measurement-induced transitions, which separate two distinct stable phases: one interaction-driven, where entanglement is high, and another measurement-driven, where entanglement is low. However, different types of measurements can lead to other scenarios, and often also generate entanglement themselves. In this work we study quantum many-body systems where both interactions and measurements take place collectively and thus generate a high degree of entanglement if acting separately. We show that nontrivial competition between these two actors emerges, leading to configurations with very low entanglement. These arise when measurements and interactions are of comparable strength, and we show that this phenomenon can be linked to the fundamental mechanism that explains the emergence of classical phase space dynamics from quantum trajectories.

► BibTeX data

► References

[1] Ehud Altman, Kenneth R Brown, Giuseppe Carleo, Lincoln D Carr, Eugene Demler, Cheng Chin, Brian DeMarco, Sophia E Economou, Mark A Eriksson, Kai-Mei C Fu, et al. ``Quantum simulators: Architectures and opportunities''. PRX Quantum 2, 017003 (2021).

[2] Christian W. Bauer, Zohreh Davoudi, A. Baha Balantekin, Tanmoy Bhattacharya, Marcela Carena, Wibe A. de Jong, Patrick Draper, Aida El-Khadra, Nate Gemelke, Masanori Hanada, Dmitri Kharzeev, Henry Lamm, Ying-Ying Li, Junyu Liu, Mikhail Lukin, Yannick Meurice, Christopher Monroe, Benjamin Nachman, Guido Pagano, John Preskill, Enrico Rinaldi, Alessandro Roggero, David I. Santiago, Martin J. Savage, Irfan Siddiqi, George Siopsis, David Van Zanten, Nathan Wiebe, Yukari Yamauchi, Kübra Yeter-Aydeniz, and Silvia Zorzetti. ``Quantum simulation for high-energy physics''. PRX Quantum 4, 027001 (2023).

[3] Lorenzo Piroli, Bruno Bertini, J Ignacio Cirac, and Tomaž Prosen. ``Exact dynamics in dual-unitary quantum circuits''. Physical Review B 101, 094304 (2020).

[4] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Leo Zhou. ``The quantum approximate optimization algorithm and the Sherrington-Kirkpatrick model at infinite size''. Quantum 6, 759 (2022).

[5] Or Katz, Marko Cetina, and Christopher Monroe. ``N-body interactions between trapped ion qubits via spin-dependent squeezing''. Physical Review Letters 129, 063603 (2022).

[6] Dominic V Else, Christopher Monroe, Chetan Nayak, and Norman Y Yao. ``Discrete time crystals''. Annual Review of Condensed Matter Physics 11, 467–499 (2020).

[7] Pieter W Claeys, Mohit Pandey, Dries Sels, and Anatoli Polkovnikov. ``Floquet-engineering counterdiabatic protocols in quantum many-body systems''. Physical Review Letters 123, 090602 (2019).

[8] Pavan Hosur, Xiao-Liang Qi, Daniel A Roberts, and Beni Yoshida. ``Chaos in quantum channels''. of High Energy Physics 2016, 1–49 (2016).

[9] Yaodong Li, Xiao Chen, and Matthew PA Fisher. ``Quantum zeno effect and the many-body entanglement transition''. Physical Review B 98, 205136 (2018).

[10] Brian Skinner, Jonathan Ruhman, and Adam Nahum. ``Measurement-induced phase transitions in the dynamics of entanglement''. Physical Review X 9, 031009 (2019).

[11] Yimu Bao, Soonwon Choi, and Ehud Altman. ``Theory of the phase transition in random unitary circuits with measurements''. Physical Review B 101, 104301 (2020).

[12] Soonwon Choi, Yimu Bao, Xiao-Liang Qi, and Ehud Altman. ``Quantum error correction in scrambling dynamics and measurement-induced phase transition''. Physical Review Letters 125, 030505 (2020).

[13] Chao-Ming Jian, Yi-Zhuang You, Romain Vasseur, and Andreas WW Ludwig. ``Measurement-induced criticality in random quantum circuits''. Physical Review B 101, 104302 (2020).

[14] Michael J Gullans and David A Huse. ``Dynamical purification phase transition induced by quantum measurements''. Physical Review X 10, 041020 (2020).

[15] Andrew C Potter and Romain Vasseur. ``Entanglement dynamics in hybrid quantum circuits''. In Entanglement in Spin Chains: From Theory to Quantum Technology Applications. Pages 211–249. Springer (2022).

[16] Matthew PA Fisher, Vedika Khemani, Adam Nahum, and Sagar Vijay. ``Random quantum circuits''. Annual Review of Condensed Matter Physics 14, 335–379 (2023).

[17] Maxwell Block, Yimu Bao, Soonwon Choi, Ehud Altman, and Norman Y Yao. ``Measurement-induced transition in long-range interacting quantum circuits''. Physical Review Letters 128, 010604 (2022).

[18] Piotr Sierant, Giuliano Chiriacò, Federica M Surace, Shraddha Sharma, Xhek Turkeshi, Marcello Dalmonte, Rosario Fazio, and Guido Pagano. ``Dissipative floquet dynamics: from steady state to measurement induced criticality in trapped-ion chains''. Quantum 6, 638 (2022).

[19] Tomohiro Hashizume, Gregory Bentsen, and Andrew J Daley. ``Measurement-induced phase transitions in sparse nonlocal scramblers''. Physical Review Research 4, 013174 (2022).

[20] Marcin Szyniszewski, Alessandro Romito, and Henning Schomerus. ``Entanglement transition from variable-strength weak measurements''. Physical Review B 100, 064204 (2019).

[21] Mathias Van Regemortel, Ze-Pei Cian, Alireza Seif, Hossein Dehghani, and Mohammad Hafezi. ``Entanglement entropy scaling transition under competing monitoring protocols''. Physical Review Letters 126, 123604 (2021).

[22] Matteo Ippoliti, Michael J Gullans, Sarang Gopalakrishnan, David A Huse, and Vedika Khemani. ``Entanglement phase transitions in measurement-only dynamics''. Physical Review X 11, 011030 (2021).

[23] Alberto Biella and Marco Schiró. ``Many-body quantum zeno effect and measurement-induced subradiance transition''. Quantum 5, 528 (2021).

[24] Sarang Gopalakrishnan and Michael J Gullans. ``Entanglement and purification transitions in non-hermitian quantum mechanics''. Physical review letters 126, 170503 (2021).

[25] John K Stockton, JM Geremia, Andrew C Doherty, and Hideo Mabuchi. ``Characterizing the entanglement of symmetric many-particle spin-1 2 systems''. Physical Review A 67, 022112 (2003).

[26] Alessio Lerose and Silvia Pappalardi. ``Bridging entanglement dynamics and chaos in semiclassical systems''. Physical Review A 102, 032404 (2020).

[27] Ángel L. Corps and Armando Relaño. ``Dynamical and excited-state quantum phase transitions in collective systems''. Phys. Rev. B 106, 024311 (2022).

[28] Ángel L. Corps and Armando Relaño. ``Theory of dynamical phase transitions in quantum systems with symmetry-breaking eigenstates''. Phys. Rev. Lett. 130, 100402 (2023).

[29] Pavel Cejnar, Pavel Stránský, Michal Macek, and Michal Kloc. ``Excited-state quantum phase transitions''. Journal of Physics A: Mathematical and Theoretical 54, 133001 (2021).

[30] Fritz Haake, M Kuś, and Rainer Scharf. ``Classical and quantum chaos for a kicked top''. Zeitschrift für Physik B Condensed Matter 65, 381–395 (1987).

[31] Manuel H Muñoz-Arias, Pablo M Poggi, and Ivan H Deutsch. ``Nonlinear dynamics and quantum chaos of a family of kicked p-spin models''. Physical Review E 103, 052212 (2021).

[32] Julian Huber, Peter Kirton, and Peter Rabl. ``Phase-space methods for simulating the dissipative many-body dynamics of collective spin systems''. Physics 10, 045 (2021).

[33] Angelo Russomanno, Fernando Iemini, Marcello Dalmonte, and Rosario Fazio. ``Floquet time crystal in the Lipkin-Meshkov-Glick model''. Physical Review B 95, 214307 (2017).

[34] Manuel H Muñoz-Arias, Karthik Chinni, and Pablo M Poggi. ``Floquet time crystals in driven spin systems with all-to-all p-body interactions''. Physical Review Research 4, 023018 (2022).

[35] Masahiro Kitagawa and Masahito Ueda. ``Squeezed spin states''. Phys. Rev. A 47, 5138–5143 (1993).

[36] A. Micheli, D. Jaksch, J. I. Cirac, and P. Zoller. ``Many-particle entanglement in two-component bose-einstein condensates''. Phys. Rev. A 67, 013607 (2003).

[37] Manuel H. Muñoz Arias, Ivan H. Deutsch, and Pablo M. Poggi. ``Phase-space geometry and optimal state preparation in quantum metrology with collective spins''. PRX Quantum 4, 020314 (2023).

[38] Hiroki Saito and Masahito Ueda. ``Measurement-induced spin squeezing in a cavity''. Phys. Rev. A 68, 043820 (2003).

[39] Tanmoy Bhattacharya, Salman Habib, and Kurt Jacobs. ``Continuous quantum measurement and the emergence of classical chaos''. Physical review letters 85, 4852 (2000).

[40] M Kuś, R Scharf, and F Haake. ``Symmetry versus degree of level repulsion for kicked quantum systems''. Zeitschrift für Physik B Condensed Matter 66, 129–134 (1987).

[41] Collin M. Trail, Vaibhav Madhok, and Ivan H. Deutsch. ``Entanglement and the generation of random states in the quantum chaotic dynamics of kicked coupled tops''. Phys. Rev. E 78, 046211 (2008).

[42] Brian Swingle, Gregory Bentsen, Monika Schleier-Smith, and Patrick Hayden. ``Measuring the scrambling of quantum information''. Phys. Rev. A 94, 040302 (2016).

[43] Sivaprasad Omanakuttan, Karthik Chinni, Philip Daniel Blocher, and Pablo M. Poggi. ``Scrambling and quantum chaos indicators from long-time properties of operator distributions''. Phys. Rev. A 107, 032418 (2023).

[44] Victor Bapst and Guilhem Semerjian. ``On quantum mean-field models and their quantum annealing''. Journal of Statistical Mechanics: Theory and Experiment 2012, P06007 (2012).

[45] Lukas M Sieberer, Tobias Olsacher, Andreas Elben, Markus Heyl, Philipp Hauke, Fritz Haake, and Peter Zoller. ``Digital quantum simulation, trotter errors, and quantum chaos of the kicked top''. npj Quantum Information 5, 1–11 (2019).

[46] Ivan H Deutsch and Poul S Jessen. ``Quantum control and measurement of atomic spins in polarization spectroscopy''. Optics Communications 283, 681–694 (2010).

[47] Y. Takahashi, K. Honda, N. Tanaka, K. Toyoda, K. Ishikawa, and T. Yabuzaki. ``Quantum nondemolition measurement of spin via the paramagnetic faraday rotation''. Phys. Rev. A 60, 4974–4979 (1999).

[48] A. Kuzmich, L. Mandel, and N. P. Bigelow. ``Generation of Spin Squeezing via Continuous Quantum Nondemolition Measurement''. Physical Review Letters 85, 1594–1597 (2000).

[49] Luca Pezzè, Augusto Smerzi, Markus K. Oberthaler, Roman Schmied, and Philipp Treutlein. ``Quantum metrology with nonclassical states of atomic ensembles''. Rev. Mod. Phys. 90, 035005 (2018).

[50] Luca Pezzé and Augusto Smerzi. ``Entanglement, nonlinear dynamics, and the heisenberg limit''. Phys. Rev. Lett. 102, 100401 (2009).

[51] Samuel L. Braunstein and Carlton M. Caves. ``Statistical distance and the geometry of quantum states''. Phys. Rev. Lett. 72, 3439–3443 (1994).

[52] Philipp Hyllus, Wiesław Laskowski, Roland Krischek, Christian Schwemmer, Witlef Wieczorek, Harald Weinfurter, Luca Pezzé, and Augusto Smerzi. ``Fisher information and multiparticle entanglement''. Phys. Rev. A 85, 022321 (2012).

[53] Raúl Morral-Yepes, Adam Smith, S. L. Sondhi, and Frank Pollmann. ``Entanglement transitions in unitary circuit games'' (2023). arXiv:2304.12965.

[54] Frantisek Duris, Juraj Gazdarica, Iveta Gazdaricova, Lucia Strieskova, Jaroslav Budis, Jan Turna, and Tomas Szemes. ``Mean and variance of ratios of proportions from categories of a multinomial distribution''. Journal of Statistical Distributions and Applications 5, 1–20 (2018).

[55] Benoı̂t Collins and Piotr Śniady. ``Integration with respect to the Haar measure on unitary, orthogonal and symplectic group''. Communications in Mathematical Physics 264, 773–795 (2006).

[56] Pablo M. Poggi, Nathan K. Lysne, Kevin W. Kuper, Ivan H. Deutsch, and Poul S. Jessen. ``Quantifying the sensitivity to errors in analog quantum simulation''. PRX Quantum 1, 020308 (2020).

[57] Juan Pablo Paz and Wojciech Hubert Zurek. ``Environment-induced decoherence and the transition from quantum to classical''. In Fundamentals of quantum information: quantum computation, communication, decoherence and all that. Pages 77–148. Springer (2002).

[58] Maximilian A Schlosshauer. ``Decoherence and the quantum-to-classical transition''. Springer Berlin, Heidelberg. (2007). url: https:/​/​​book/​10.1007/​978-3-540-35775-9.

[59] Yoshinori Takahashi and Fumiaki Shibata. ``Generalized phase space method in spin systems-spin coherent state representation''. J. Stat. Phys. 14, 49–65 (1976).

[60] Anatoli Polkovnikov. ``Phase space representation of quantum dynamics''. Annals of Physics 325, 1790–1852 (2010).

[61] Manuel H. Muñoz Arias, Pablo M. Poggi, Poul S. Jessen, and Ivan H. Deutsch. ``Simulating nonlinear dynamics of collective spins via quantum measurement and feedback''. Phys. Rev. Lett. 124, 110503 (2020).

[62] Manuel H. Muñoz Arias, Ivan H. Deutsch, Poul S. Jessen, and Pablo M. Poggi. ``Simulation of the complex dynamics of mean-field $p$-spin models using measurement-based quantum feedback control''. Phys. Rev. A 102, 022610 (2020).

[63] Alessio Paviglianiti and Alessandro Silva. ``Multipartite entanglement in the measurement-induced phase transition of the quantum ising chain''. Phys. Rev. B 108, 184302 (2023).

[64] Hugo Lóio, Andrea De Luca, Jacopo De Nardis, and Xhek Turkeshi. ``Purification timescales in monitored fermions''. Phys. Rev. B 108, L020306 (2023).

[65] Crystal Noel, Pradeep Niroula, Daiwei Zhu, Andrew Risinger, Laird Egan, Debopriyo Biswas, Marko Cetina, Alexey V Gorshkov, Michael J Gullans, David A Huse, et al. ``Measurement-induced quantum phases realized in a trapped-ion quantum computer''. Nature Physics 18, 760–764 (2022).

[66] J. C. Hoke, M. Ippoliti, E. Rosenberg, D. Abanin, R. Acharya, T. I. Andersen, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, J. C. Bardin, A. Bengtsson, G. Bortoli, A. Bourassa, J. Bovaird, L. Brill, M. Broughton, B. B. Buckley, D. A. Buell, T. Burger, B. Burkett, N. Bushnell, Z. Chen, B. Chiaro, D. Chik, J. Cogan, R. Collins, P. Conner, W. Courtney, A. L. Crook, B. Curtin, A. G. Dau, D. M. Debroy, A. Del Toro Barba, S. Demura, A. Di Paolo, I. K. Drozdov, A. Dunsworth, D. Eppens, C. Erickson, E. Farhi, R. Fatemi, V. S. Ferreira, L. F. Burgos, E. Forati, A. G. Fowler, B. Foxen, W. Giang, C. Gidney, D. Gilboa, M. Giustina, R. Gosula, J. A. Gross, S. Habegger, M. C. Hamilton, M. Hansen, M. P. Harrigan, S. D. Harrington, P. Heu, M. R. Hoffmann, S. Hong, T. Huang, A. Huff, W. J. Huggins, S. V. Isakov, J. Iveland, E. Jeffrey, Z. Jiang, C. Jones, P. Juhas, D. Kafri, K. Kechedzhi, T. Khattar, M. Khezri, M. Kieferová, S. Kim, A. Kitaev, P. V. Klimov, A. R. Klots, A. N. Korotkov, F. Kostritsa, J. M. Kreikebaum, D. Landhuis, P. Laptev, K.-M. Lau, L. Laws, J. Lee, K. W. Lee, Y. D. Lensky, B. J. Lester, A. T. Lill, W. Liu, A. Locharla, O. Martin, J. R. McClean, M. McEwen, K. C. Miao, A. Mieszala, S. Montazeri, A. Morvan, R. Movassagh, W. Mruczkiewicz, M. Neeley, C. Neill, A. Nersisyan, M. Newman, J. H. Ng, A. Nguyen, M. Nguyen, M. Y. Niu, T. E. O’Brien, S. Omonije, A. Opremcak, A. Petukhov, R. Potter, L. P. Pryadko, C. Quintana, C. Rocque, N. C. Rubin, N. Saei, D. Sank, K. Sankaragomathi, K. J. Satzinger, H. F. Schurkus, C. Schuster, M. J. Shearn, A. Shorter, N. Shutty, V. Shvarts, J. Skruzny, W. C. Smith, R. Somma, G. Sterling, D. Strain, M. Szalay, A. Torres, G. Vidal, B. Villalonga, C. V. Heidweiller, T. White, B. W. K. Woo, C. Xing, Z. J. Yao, P. Yeh, J. Yoo, G. Young, A. Zalcman, Y. Zhang, N. Zhu, N. Zobrist, H. Neven, R. Babbush, D. Bacon, S. Boixo, J. Hilton, E. Lucero, A. Megrant, J. Kelly, Y. Chen, V. Smelyanskiy, X. Mi, V. Khemani, and P. Roushan. ``Measurement-induced entanglement and teleportation on a noisy quantum processor''. Nature 622, 481–486 (2023).

[67] Ali G. Moghaddam, Kim Pöyhönen, and Teemu Ojanen. ``Exponential shortcut to measurement-induced entanglement phase transitions''. Phys. Rev. Lett. 131, 020401 (2023).

[68] Juan A Muniz, Diego Barberena, Robert J Lewis-Swan, Dylan J Young, Julia RK Cline, Ana Maria Rey, and James K Thompson. ``Exploring dynamical phase transitions with cold atoms in an optical cavity''. Nature 580, 602–607 (2020).

[69] Zeyang Li, Boris Braverman, Simone Colombo, Chi Shu, Akio Kawasaki, Albert F. Adiyatullin, Edwin Pedrozo-Peñafiel, Enrique Mendez, and Vladan Vuletić. ``Collective spin-light and light-mediated spin-spin interactions in an optical cavity''. PRX Quantum 3, 020308 (2022).

[70] Ben Q. Baragiola, Leigh M. Norris, Enrique Montaño, Pascal G. Mickelson, Poul S. Jessen, and Ivan H. Deutsch. ``Three-dimensional light-matter interface for collective spin squeezing in atomic ensembles''. Phys. Rev. A 89, 033850 (2014).

[71] T. Holstein and H. Primakoff. ``Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet''. Physical Review 58, 1098–1113 (1940).

Cited by

[1] Bo Xing, Xhek Turkeshi, Marco Schiró, Rosario Fazio, and Dario Poletti, "Interactions and integrability in weakly monitored Hamiltonian systems", Physical Review B 109 6, L060302 (2024).

[2] Gianluca Passarelli, Xhek Turkeshi, Angelo Russomanno, Procolo Lucignano, Marco Schirò, and Rosario Fazio, "Post-selection-free Measurement-Induced Phase Transition in Driven Atomic Gases with Collective Decay", arXiv:2306.00841, (2023).

[3] Bo Xing, Xhek Turkeshi, Marco Schiró, Rosario Fazio, and Dario Poletti, "Interactions and integrability in weakly monitored Hamiltonian systems", arXiv:2308.09133, (2023).

[4] Yu-Xin Wang, Alireza Seif, and Aashish A. Clerk, "Uncovering measurement-induced entanglement via directional adaptive dynamics and incomplete information", arXiv:2310.01338, (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-02-26 20:24:03) and SAO/NASA ADS (last updated successfully 2024-02-26 20:24:04). The list may be incomplete as not all publishers provide suitable and complete citation data.