Quantum-optimal information encoding using noisy passive linear optics

Andrew Tanggara1,2, Ranjith Nair2, Syed Assad3,4, Varun Narasimhachar5,2, Spyros Tserkis3, Jayne Thompson5, Ping Koy Lam3,4, and Mile Gu2,1,6

1Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543.
2Nanyang Quantum Hub, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 639673.
3Centre for Quantum Computation and Communication Technology, Department of Quantum Science, Research School of Physics and Engineering, Australian National University, Canberra ACT, Australia 2601.
4A*STAR Quantum Innovation Centre (Q.InC), Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 08-03 Innovis, Singapore 138634.
5A*STAR Quantum Innovation Centre (Q.InC), Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), Singapore.
6CNRS-UNS-NUS-NTU International Joint Research Unit, UMI 3654, Singapore 117543.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The amount of information that a noisy channel can transmit has been one of the primary subjects of interest in information theory. In this work we consider a practically-motivated family of optical quantum channels that can be implemented without an external energy source. We optimize the Holevo information over procedures that encode information in attenuations and phase-shifts applied by these channels on a resource state of finite energy. It is shown that for any given input state and environment temperature, the maximum Holevo information can be achieved by an encoding procedure that uniformly distributes the channel's phase-shift parameter. Moreover for large families of input states, any maximizing encoding scheme has a finite number of channel attenuation values, simplifying the codewords to a finite number of rings around the origin in the output phase space. The above results and numerical evidence suggests that this property holds for all resource states. Our results are directly applicable to the quantum reading of an optical memory in the presence of environmental thermal noise.

Optical systems have been used ubiquitously in information processing tasks such as information storage (e.g. optical storage drives) and transmission (e.g. fiber optics). With the growing interest in extending these tasks to the quantum regime, it is of great importance to investigate how one can encode the largest amount of classical information possible in optical quantum systems, especially in the presence of inevitable environmental noise. In this work, we characterize the best procedure that one can do to encode the largest amount of information into an optical quantum system that goes through a channel in a noisy thermal environment by modulating its parameters. We consider a family of linear optical channels with no internal source of energy, hence restricts energy source to the state of input quantum systems, and have found the best encoding procedure for many given resource quantum states with a given energy and a given environment temperature.

► BibTeX data

► References

[1] Claude Elwood Shannon. ``A mathematical theory of communication''. The Bell system technical journal 27, 379–423 (1948).
https:/​/​doi.org/​10.1002/​j.1538-7305.1948.tb01338.x

[2] Alexander Semenovich Holevo. ``Bounds for the quantity of information transmitted by a quantum communication channel''. Problemy Peredachi Informatsii 9, 3–11 (1973). url: http:/​/​mi.mathnet.ru/​ppi903.
http:/​/​mi.mathnet.ru/​ppi903

[3] A.S. Holevo. ``The capacity of the quantum channel with general signal states''. IEEE Transactions on Information Theory 44, 269–273 (1998).
https:/​/​doi.org/​10.1109/​18.651037

[4] Benjamin Schumacher and Michael D. Westmoreland. ``Sending classical information via noisy quantum channels''. Physical Review A 56, 131–138 (1997).
https:/​/​doi.org/​10.1103/​physreva.56.131

[5] V. Giovannetti, R. García-Patrón, N. J. Cerf, and A. S. Holevo. ``Ultimate classical communication rates of quantum optical channels''. Nature Photonics 8, 796–800 (2014).
https:/​/​doi.org/​10.1038/​nphoton.2014.216

[6] Hsu, Delaubert, Bowen, Fabre, Bachor, and Koy Lam. ``A quantum study of multibit phase coding for optical storage''. IEEE Journal of Quantum Electronics 42, 1001–1007 (2006).
https:/​/​doi.org/​10.1109/​jqe.2006.881634

[7] Stefano Pirandola. ``Quantum reading of a classical digital memory''. Physical Review Letters 106 (2011).
https:/​/​doi.org/​10.1103/​physrevlett.106.090504

[8] Stefano Pirandola, Cosmo Lupo, Vittorio Giovannetti, Stefano Mancini, and Samuel L Braunstein. ``Quantum reading capacity''. New Journal of Physics 13, 113012 (2011).
https:/​/​doi.org/​10.1088/​1367-2630/​13/​11/​113012

[9] Saikat Guha, Zachary Dutton, Ranjith Nair, Jeffrey H. Shapiro, and Brent J. Yen. ``Information capacity of quantum reading''. Frontiers in Optics 2011/​Laser Science XXVII (2011).
https:/​/​doi.org/​10.1364/​ls.2011.ltuf2

[10] Mark M Wilde, Saikat Guha, Si-Hui Tan, and Seth Lloyd. ``Explicit capacity-achieving receivers for optical communication and quantum reading''. In 2012 IEEE International Symposium on Information Theory Proceedings. Pages 551–555. IEEE (2012).
https:/​/​doi.org/​10.1109/​ISIT.2012.6284251

[11] Saikat Guha and Jeffrey H Shapiro. ``Reading boundless error-free bits using a single photon''. Physical Review A 87, 062306 (2013).
https:/​/​doi.org/​10.1103/​PhysRevA.87.062306

[12] A Serafini, M Lostaglio, S Longden, U Shackerley-Bennett, C-Y Hsieh, and G Adesso. ``Gaussian thermal operations and the limits of algorithmic cooling''. Physical Review Letters 124, 010602 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.010602

[13] Vittorio Giovannetti, Saikat Guha, Seth Lloyd, Lorenzo Maccone, Jeffrey H Shapiro, and Horace P Yuen. ``Classical capacity of the lossy bosonic channel: The exact solution''. Physical review letters 92, 027902 (2004).
https:/​/​doi.org/​10.1103/​PhysRevLett.92.027902

[14] Varun Narasimhachar, Syed Assad, Felix C Binder, Jayne Thompson, Benjamin Yadin, and Mile Gu. ``Thermodynamic resources in continuous-variable quantum systems''. npj Quantum Information 7, 9 (2021).
https:/​/​doi.org/​10.1038/​s41534-020-00342-6

[15] Alexander S Holevo. ``Quantum systems, channels, information''. In Quantum Systems, Channels, Information. de Gruyter (2019).
https:/​/​doi.org/​10.1515/​9783110642490

[16] Varun Narasimhachar, Jayne Thompson, Jiajun Ma, Gilad Gour, and Mile Gu. ``Quantifying memory capacity as a quantum thermodynamic resource''. Physical Review Letters 122, 060601 (2019).
https:/​/​doi.org/​10.1103/​physrevlett.122.060601

[17] Elias M Stein and Rami Shakarchi. ``Real analysis: measure theory, integration, and hilbert spaces''. Princeton University Press. (2009).
https:/​/​doi.org/​10.1515/​9781400835560

[18] Joel G. Smith. ``The information capacity of amplitude- and variance-constrained sclar gaussian channels''. Information and Control 18, 203–219 (1971).
https:/​/​doi.org/​10.1016/​s0019-9958(71)90346-9

[19] S.(Shitz) Shamai. ``Capacity of a pulse amplitude modulated direct detection photon channel''. IEE Proceedings I Communications, Speech and Vision 137, 424 (1990).
https:/​/​doi.org/​10.1049/​ip-i-2.1990.0056

[20] Joel Gorham Smith. ``On the information capacity of peak and average power constrained gaussian channels''. University of California, Berkeley. (1969). url: https:/​/​www.proquest.com/​openview/​b433005905c536863fa5c50e1d91b0c6/​1?pq-origsite=gscholar&cbl=18750&diss=y.
https:/​/​www.proquest.com/​openview/​b433005905c536863fa5c50e1d91b0c6/​1?pq-origsite=gscholar&cbl=18750&diss=y

[21] S. Shamai and I. Bar-David. ``The capacity of average and peak-power-limited quadrature gaussian channels''. IEEE Transactions on Information Theory 41, 1060–1071 (1995).
https:/​/​doi.org/​10.1109/​18.391243

[22] Alex Dytso, Mert Al, H. Vincent Poor, and Shlomo Shamai Shitz. ``On the capacity of the peak power constrained vector gaussian channel: An estimation theoretic perspective''. IEEE Transactions on Information Theory 65, 3907–3921 (2019).
https:/​/​doi.org/​10.1109/​tit.2018.2890208

[23] Semih Yagli, Alex Dytso, H. Vincent Poor, and Shlomo Shamai Shitz. ``An upper bound on the number of mass points in the capacity achieving distribution for the amplitude constrained additive gaussian channel''. 2019 IEEE International Symposium on Information Theory (ISIT) (2019).
https:/​/​doi.org/​10.1109/​isit.2019.8849318

[24] J. Huang and S.P. Meyn. ``Characterization and computation of optimal distributions for channel coding''. IEEE Transactions on Information Theory 51, 2336–2351 (2005).
https:/​/​doi.org/​10.1109/​tit.2005.850108

[25] Alexander S Holevo and Reinhard F Werner. ``Evaluating capacities of bosonic gaussian channels''. Physical Review A 63, 032312 (2001).
https:/​/​doi.org/​10.1103/​PhysRevA.63.032312

[26] Filippo Caruso, Vittorio Giovannetti, and Alexander S Holevo. ``One-mode bosonic gaussian channels: a full weak-degradability classification''. New Journal of Physics 8, 310 (2006).
https:/​/​doi.org/​10.1088/​1367-2630/​8/​12/​310

[27] Maksim E Shirokov. ``On the energy-constrained diamond norm and its application in quantum information theory''. Problems of Information Transmission 54, 20–33 (2018).
https:/​/​doi.org/​10.1134/​S0032946018010027

[28] Simon Becker and Nilanjana Datta. ``Convergence rates for quantum evolution and entropic continuity bounds in infinite dimensions''. Communications in Mathematical Physics 374, 823–871 (2020).
https:/​/​doi.org/​10.1007/​s00220-019-03594-2

[29] Ranjith Nair. ``Quantum-limited loss sensing: Multiparameter estimation and bures distance between loss channels''. Physical Review Letters 121, 230801 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.121.230801

[30] Ranjith Nair, Guo Yao Tham, and Mile Gu. ``Optimal gain sensing of quantum-limited phase-insensitive amplifiers''. Physical Review Letters 128, 180506 (2022).
https:/​/​doi.org/​10.1103/​PhysRevLett.128.180506

[31] Ronald J Evans and J Boersma. ``The entropy of a poisson distribution (c. robert appledorn)''. SIAM Review 30, 314–317 (1988).
https:/​/​doi.org/​10.1137/​1030059

[32] Jerrold E Marsden, Michael J Hoffman, Terry Marsden, et al. ``Basic complex analysis''. Macmillan. (1999).

[33] Borzoo Rassouli and Bruno Clerckx. ``An upper bound for the capacity of amplitude-constrained scalar awgn channel''. IEEE Communications Letters 20, 1924–1926 (2016).
https:/​/​doi.org/​10.1109/​lcomm.2016.2565668

[34] A.L. McKellips. ``Simple tight bounds on capacity for the peak-limited discrete-time channel''. International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings. (2004).
https:/​/​doi.org/​10.1109/​isit.2004.1365385

[35] Andrew Thangaraj, Gerhard Kramer, and Georg Bocherer. ``Capacity bounds for discrete-time, amplitude-constrained, additive white gaussian noise channels''. IEEE Transactions on Information Theory 63, 4172–4182 (2017).
https:/​/​doi.org/​10.1109/​tit.2017.2692214

[36] Amos Lapidoth and Stefan M. Moser. ``On the capacity of the discrete-time poisson channel''. IEEE Transactions on Information Theory 55, 303–322 (2009).
https:/​/​doi.org/​10.1109/​tit.2008.2008121

[37] Amos Lapidoth, Stefan M. Moser, and MichÈle A. Wigger. ``On the capacity of free-space optical intensity channels''. IEEE Transactions on Information Theory 55, 4449–4461 (2009).
https:/​/​doi.org/​10.1109/​tit.2009.2027522

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2024-06-17 23:47:07). On SAO/NASA ADS no data on citing works was found (last attempt 2024-06-17 23:47:07).