Pipelined correlated minimum weight perfect matching of the surface code

Alexandru Paler1,2 and Austin G. Fowler3

1Aalto University, Espoo 02150, Finland
2University of Texas at Dallas, Richardson, TX 75080, USA
3Google Inc., Santa Barbara, 93117 CA, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We describe a pipeline approach to decoding the surface code using minimum weight perfect matching, including taking into account correlations between detection events. An independent no-communication parallelizable processing stage reweights the graph according to likely correlations, followed by another no-communication parallelizable stage for high confidence matching. A later general stage finishes the matching. This is a simplification of previous correlated matching techniques which required a complex interaction between general matching and re-weighting the graph. Despite this simplification, which gives correlated matching a better chance of achieving real-time processing, we find the logical error rate practically unchanged. We validate the new algorithm on the fully fault-tolerant toric, unrotated, and rotated surface codes, all with standard depolarizing noise. We expect these techniques to be applicable to a wide range of other decoders.

► BibTeX data

► References

[1] S. B. Bravyi and A. Yu. Kitaev. ``Quantum codes on a lattice with boundary'' (1998). arXiv:quant-ph/​9811052.

[2] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill. ``Topological quantum memory''. J. Math. Phys. 43, 4452–4505 (2002). url: https:/​/​doi.org/​10.1063/​1.1499754.

[3] Robert Raussendorf and Jim Harrington. ``Fault-tolerant quantum computation with high threshold in two dimensions''. Phys. Rev. Lett. 98, 190504 (2007).

[4] R. Raussendorf, J. Harrington, and K. Goyal. ``Topological fault-tolerance in cluster state quantum computation''. New J. Phys. 9, 199 (2007). url: https:/​/​doi.org/​10.1088/​1367-2630/​9/​6/​199.

[5] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. ``Surface codes: Towards practical large-scale quantum computation''. Phys. Rev. A 86, 032324 (2012). url: https:/​/​doi.org/​10.1103/​PhysRevA.86.032324.

[6] Austin G. Fowler and Craig Gidney. ``Low overhead quantum computation using lattice surgery'' (2019). arXiv:1808.06709.

[7] D. Litinski. ``A game of surface codes: Large-scale quantum computing with lattice surgery''. Quantum 3, 128 (2019).

[8] Craig Gidney and Austin G. Fowler. ``Flexible layout of surface code computations using autoccz states'' (2019). arXiv:1905.08916.

[9] I. D. Kivlichan, C. Gidney, D. W. Berry, N. Wiebe, J. McClean, Wei Sun, Zhang Jiang, N. Rubin, A. G. Fowler, A. Aspuru-Guzik, H. Neven, and R. Babbush. ``Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization''. Quantum 4, 296 (2020).

[10] Ruben S. Andrist, H. Bombin, Helmut G. Katzgraber, and M. A. Martin-Delgado. ``Optimal error correction in topological subsystem codes''. Phys. Rev. A 85, 050302 (2012).

[11] Guillaume Duclos-Cianci and David Poulin. ``Fault-tolerant renormalization group decoder for abelian topological codes'' (2013). arXiv:1304.6100.

[12] Adrian Hutter, James R. Wootton, and Daniel Loss. ``Efficient markov chain monte carlo algorithm for the surface code''. Phys. Rev. A 89, 022326 (2014).

[13] James Wootton. ``A simple decoder for topological codes''. Entropy 17, 1946–1957 (2015).

[14] Austin G. Fowler. ``Optimal complexity correction of correlated errors in the surface code'' (2013). arXiv:1310.0863.

[15] P. Baireuther, M. D. Caio, B. Criger, C. W. J. Beenakker, and T. E. O'Brien. ``Neural network decoder for topological color codes with circuit level noise''. New J. Phys 21, 013003 (2019).

[16] Nicolas Delfosse and Naomi H. Nickerson. ``Almost-linear time decoding algorithm for topological codes''. Quantum 5, 595 (2021).

[17] Antonio deMarti iOlius, Patricio Fuentes, Román Orús, Pedro M. Crespo, and Josu Etxezarreta Martinez. ``Decoding algorithms for surface codes'' (2023). arXiv:2307.14989.

[18] Jack Edmonds. ``Paths, trees, and flowers''. Canadian Journal of Mathematics 17, 449–467 (1965).

[19] J. Edmonds. ``Maximum matching and a polyhedron with 0,1-vertices''. J. Res. Nat. Bur. Standards 69B, 125–130 (1965).

[20] Oscar Higgott. ``Pymatching: A python package for decoding quantum codes with minimum-weight perfect matching''. ACM Transactions on Quantum Computing 3 (2022).

Cited by

[1] Luka Skoric, Dan E. Browne, Kenton M. Barnes, Neil I. Gillespie, and Earl T. Campbell, "Parallel window decoding enables scalable fault tolerant quantum computation", Nature Communications 14 1, 7040 (2023).

[2] Samuel C. Smith, Benjamin J. Brown, and Stephen D. Bartlett, "Local Predecoder to Reduce the Bandwidth and Latency of Quantum Error Correction", Physical Review Applied 19 3, 034050 (2023).

[3] Antonio deMarti iOlius, Josu Etxezarreta Martinez, Patricio Fuentes, and Pedro M. Crespo, "Performance enhancement of surface codes via recursive minimum-weight perfect-match decoding", Physical Review A 108 2, 022401 (2023).

[4] F. Battistel, C. Chamberland, K. Johar, R. W. J. Overwater, F. Sebastiano, L. Skoric, Y. Ueno, and M. Usman, "Real-time decoding for fault-tolerant quantum computing: progress, challenges and outlook", Nano Futures 7 3, 032003 (2023).

[5] György P. Gehér, Campbell McLauchlan, Earl T. Campbell, Alexandra E. Moylett, and Ophelia Crawford, "Error-corrected Hadamard gate simulated at the circuit level", arXiv:2312.11605, (2023).

[6] Gyorgy P. Geher, Ophelia Crawford, and Earl T. Campbell, "Tangling schedules eases hardware connectivity requirements for quantum error correction", arXiv:2307.10147, (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-02-27 12:07:30) and SAO/NASA ADS (last updated successfully 2024-02-27 12:07:31). The list may be incomplete as not all publishers provide suitable and complete citation data.