Completely Positive Map for Noisy Driven Quantum Systems Derived by Keldysh Expansion

Ziwen Huang1, Yunwei Lu2, Anna Grassellino1, Alexander Romanenko1, Jens Koch2, and Shaojiang Zhu1

1Superconducting Quantum Materials and Systems Center, Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA
2Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Accurate modeling of decoherence errors in quantum processors is crucial for analyzing and improving gate fidelities. To increase the accuracy beyond that of the Lindblad dynamical map, several generalizations have been proposed, and the exploration of simpler and more systematic frameworks is still ongoing. In this paper, we introduce a decoherence model based on the Keldysh formalism. This formalism allows us to include non-periodic drives and correlated quantum noise in our model. In addition to its wide range of applications, our method is also numerically simple, and yields a CPTP map. These features allow us to integrate the Keldysh map with quantum-optimal-control techniques. We demonstrate that this strategy generates pulses that mitigate correlated quantum noise in qubit state-transfer and gate operations.

Recently, remarkable progress has been made toward achieving practical quantum computing, as both the number and quality of the qubits on quantum-computing chips have increased significantly. However, ensuring accurate gate operations on these qubits remains a challenge, which is primarily due to the occurrence of decoherence errors. To analyze and mitigate these errors, the development of a tool capable of systematically predicting the format and magnitude of the errors is crucial.

In this work, we present a simple decoherence model that can fulfill this task. The model is derived rigorously using the Keldysh formalism and possesses the following important features. First, this model is highly versatile, since it can handle arbitrary drives on quantum processors with classical or quantum noise, as well as Markovian or non-Markovian noise. Second, the dynamical maps predicted by this model are guaranteed to be physical – they are rigorously CPTP. Third, the computational complexity of the model is manageable, enabling straightforward integration with quantum-optimal-control techniques. Through the integration of this model, we numerically demonstrate improved fidelities in both state-transfer and gate operations.

Using our model, we can more conveniently understand qubit decoherence across a variety of scenarios, including those that have rarely been explored. Furthermore, this Keldysh-based model can potentially be extended to higher orders, which would be relevant if the non-Gaussian noise properties becomes important. Finally, by utilizing our model to optimize gates in real quantum processors, we can potentially further reduce inaccuracies and move closer to achieving full quantum error correction.

► BibTeX data

► References

[1] John Preskill. ``Quantum Computing in the NISQ Era and Beyond''. Quantum 2, 79 (2018).

[2] Christian Majenz, Tameem Albash, Heinz-Peter Breuer, and Daniel A. Lidar. ``Coarse Graining Can Beat the Rotating-Wave Approximation in Quantum Markovian Master Equations''. Phys. Rev. A 88, 012103 (2013).

[3] Evgeny Mozgunov and Daniel Lidar. ``Completely Positive Master Equation for Arbitrary Driving and Small Level Spacing''. Quantum 4, 227 (2020).

[4] Peter Groszkowski, Alireza Seif, Jens Koch, and A. A. Clerk. ``Simple Master Equations for Describing Driven Systems Subject to Classical Non-Markovian Noise''. Quantum 7, 972 (2023).

[5] Ziwen Huang, Pranav S. Mundada, András Gyenis, David I. Schuster, Andrew A. Houck, and Jens Koch. ``Engineering Dynamical Sweet Spots to Protect Qubits from $1/​f$ Noise''. Phys. Rev. Appl. 15, 034065 (2021).

[6] Todd J. Green, Jarrah Sastrawan, Hermann Uys, and Michael J. Biercuk. ``Arbitrary Quantum Control of Qubits in the Presence of Universal Noise''. New J. Phys. 15, 095004 (2013).

[7] Vivian Maloney, Yasuo Oda, Gregory Quiroz, B. David Clader, and Leigh M. Norris. ``Qubit Control Noise Spectroscopy with Optimal Suppression of Dephasing''. Phys. Rev. A 106, 022425 (2022).

[8] Nicolas Didier. ``Flux Control of Superconducting Qubits at Dynamical Sweet Spot'' (2019). arXiv.1912.09416.

[9] Clemens Müller and Thomas M. Stace. ``Deriving Lindblad Master Equations with Keldysh Diagrams: Correlated Gain and Loss in Higher Order Perturbation Theory''. Phys. Rev. A 95, 013847 (2017).

[10] Hans C. Fogedby. ``Field-Theoretical Approach to Open Quantum Systems and the Lindblad Equation''. Phys. Rev. A 106, 022205 (2022).

[11] Anton Trushechkin. ``Unified Gorini-Kossakowski-Lindblad-Sudarshan Quantum Master Equation Beyond the Secular Approximation''. Phys. Rev. A 103, 062226 (2021).

[12] Bassano Vacchini. ``Generalized Master Equations Leading to Completely Positive Dynamics''. Phys. Rev. Lett. 117, 230401 (2016).

[13] Ángel Rivas. ``Refined Weak-Coupling Limit: Coherence, Entanglement, and Non-Markovianity''. Phys. Rev. A 95, 042104 (2017).

[14] Robert Alicki. ``Master Equations for a Damped Nonlinear Oscillator and the Validity of the Markovian Approximation''. Phys. Rev. A 40, 4077–4081 (1989).

[15] Gernot Schaller and Tobias Brandes. ``Preservation of Positivity by Dynamical Coarse Graining''. Phys. Rev. A 78, 022106 (2008).

[16] Todd Green, Hermann Uys, and Michael J. Biercuk. ``High-Order Noise Filtering in Nontrivial Quantum Logic Gates''. Phys. Rev. Lett. 109, 020501 (2012).

[17] Pascal Cerfontaine, Tobias Hangleiter, and Hendrik Bluhm. ``Filter Functions for Quantum Processes under Correlated Noise''. Phys. Rev. Lett. 127, 170403 (2021).

[18] Tobias Hangleiter, Pascal Cerfontaine, and Hendrik Bluhm. ``Filter-function Formalism and Software Package to Compute Quantum Processes of Gate Sequences for Classical Non-Markovian Noise''. Phys. Rev. Res. 3, 043047 (2021).

[19] Jonas Bylander, Simon Gustavsson, Fei Yan, Fumiki Yoshihara, Khalil Harrabi, George Fitch, David G. Cory, Yasunobu Nakamura, Jaw-Shen Tsai, and William D. Oliver. ``Noise Spectroscopy Through Dynamical Decoupling with a Superconducting Flux Qubit''. Nat. Phys. 7, 565–570 (2011).

[20] Gerardo A. Paz-Silva, Leigh M. Norris, and Lorenza Viola. ``Multiqubit Spectroscopy of Gaussian Quantum Noise''. Phys. Rev. A 95, 022121 (2017).

[21] Kevin Schultz, Ryan LaRose, Andrea Mari, Gregory Quiroz, Nathan Shammah, B. David Clader, and William J. Zeng. ``Impact of Time-Correlated Noise on Zero-Noise Extrapolation''. Phys. Rev. A 106, 052406 (2022).

[22] Yuriy Makhlin and Alexander Shnirman. ``Dephasing of Solid-State Qubits at Optimal Points''. Phys. Rev. Lett. 92, 178301 (2004).

[23] Nelson Leung, Mohamed Abdelhafez, Jens Koch, and David Schuster. ``Speedup for Quantum Optimal Control from Automatic Differentiation Based on Graphics Processing Units''. Phys. Rev. A 95, 042318 (2017).

[24] Pranav S. Mundada, András Gyenis, Ziwen Huang, Jens Koch, and Andrew A. Houck. ``Floquet-Engineered Enhancement of Coherence Times in a Driven Fluxonium Qubit''. Phys. Rev. Appl. 14, 054033 (2020).

[25] Joseph A. Valery, Shoumik Chowdhury, Glenn Jones, and Nicolas Didier. ``Dynamical Sweet Spot Engineering via Two-Tone Flux Modulation of Superconducting Qubits''. PRX Quantum 3, 020337 (2022).

[26] Yu-Xin Wang and A. A. Clerk. ``Spectral Characterization of Non-Gaussian Quantum Noise: Keldysh Approach and Application to Photon Shot Noise''. Phys. Rev. Res. 2, 033196 (2020).

[27] Ziwen Huang, Xinyuan You, Ugur Alyanak, Alexander Romanenko, Anna Grassellino, and Shaojiang Zhu. ``High-Order Qubit Dephasing at Sweet Spots by Non-Gaussian Fluctuators: Symmetry Breaking and Floquet Protection''. Phys. Rev. Appl. 18, L061001 (2022).

[28] G. Lindblad. ``On the Generators of Quantum Dynamical Semigroups''. Commun. Math. Phys. 48, 119–130 (1976).

[29] Heinz-Peter Breuer and Francesco Petruccione. ``The Theory of Open Quantum Systems''. Chapter 3, pages 125–131. Oxford University Press, New York. (2007).

[30] Mohamed Ragab Abdelhafez. ``Quantum Optimal Control Using Automatic Differentiation''. PhD thesis. The University of Chicago. (2019).

[31] S. Blanes, F. Casas, J. A. Oteo, and J. Ros. ``The Magnus Expansion and Some of Its Applications''. Phys. Rep. 470, 151–238 (2009).

[32] J. R. Johansson, P. D. Nation, and Franco Nori. ``QuTiP 2: A Python Framework for the Dynamics of Open Quantum Systems''. Comp. Phys. Comm. 184, 1234 (2013).

[33] Fei Yan, Simon Gustavsson, Jonas Bylander, Xiaoyue Jin, Fumiki Yoshihara, David G. Cory, Yasunobu Nakamura, Terry P. Orlando, and William D. Oliver. ``Rotating-Frame Relaxation as a Noise Spectrum Analyser of a Superconducting Qubit Undergoing Driven Evolution''. Nat. Commun. 4, 2337 (2013).

[34] G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve, F. Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl, and G. Schön. ``Decoherence in a Superconducting Quantum Bit Circuit''. Phys. Rev. B 72, 134519 (2005).

[35] Long B. Nguyen, Yen-Hsiang Lin, Aaron Somoroff, Raymond Mencia, Nicholas Grabon, and Vladimir E. Manucharyan. ``High-Coherence Fluxonium Qubit''. Phys. Rev. X 9, 041041 (2019).

[36] Peter Groszkowski, A. Di Paolo, A. L. Grimsmo, A. Blais, D. I. Schuster, A. A. Houck, and Jens Koch. ``Coherence Properties of the 0-$\pi$ Qubit''. New J. Phys. 20, 043053 (2018).

[37] César A. Rodríguez-Rosario, Kavan Modi, Aik meng Kuah, Anil Shaji, and E. C. G. Sudarshan. ``Completely Positive Maps and Classical Correlations''. J. Phys. A: Math. Theor. 41, 205301 (2008).

[38] Anthony Gandon, Camille Le Calonnec, Ross Shillito, Alexandru Petrescu, and Alexandre Blais. ``Engineering, Control, and Longitudinal Readout of Floquet Qubits''. Phys. Rev. Appl. 17, 064006 (2022).

[39] Long B. Nguyen, Yosep Kim, Akel Hashim, Noah Goss, Brian Marinelli, Bibek Bhandari, Debmalya Das, Ravi K. Naik, John Mark Kreikebaum, Andrew N. Jordan, David I. Santiago, and Irfan Siddiqi. ``Programmable Heisenberg Interactions Between Floquet Qubits'' (2022). arXiv:2211.10383.

[40] Sarath Prem, Marcin M. Wysokiński, and Mircea Trif. ``Longitudinal Coupling Between Electrically Driven Spin-Qubits and a Resonator'' (2023). arXiv:2301.10163.

[41] Chunqing Deng, Jean-Luc Orgiazzi, Feiruo Shen, Sahel Ashhab, and Adrian Lupascu. ``Observation of Floquet States in a Strongly Driven Artificial Atom''. Phys. Rev. Lett. 115, 133601 (2015).

[42] Christiane P Koch, Ugo Boscain, Tommaso Calarco, Gunther Dirr, Stefan Filipp, Steffen J Glaser, Ronnie Kosloff, Simone Montangero, Thomas Schulte-Herbrüggen, Dominique Sugny, et al. ``Quantum Optimal Control in Quantum Technologies. Strategic Report on Current Status, Visions and Goals for Research in Europe''. EPJ Quantum Technol. 9, 19 (2022).

[43] Stefanie Günther, N. Anders Petersson, and Jonathan L. DuBois. ``Quandary: An Open-Source C++ Package for High-Performance Optimal Control of Open Quantum Systems''. In 2021 IEEE/​ACM Second International Workshop on Quantum Computing Software (QCS). Pages 88–98. Los Alamitos, CA, USA (2021). IEEE Computer Society.

[44] Mohamed Abdelhafez, David I. Schuster, and Jens Koch. ``Gradient-Based Optimal Control of Open Quantum Systems Using Quantum Trajectories and Automatic Differentiation''. Phys. Rev. A 99, 052327 (2019).

[45] Thomas Propson, Brian E. Jackson, Jens Koch, Zachary Manchester, and David I. Schuster. ``Robust Quantum Optimal Control with Trajectory Optimization''. Phys. Rev. Appl. 17, 014036 (2022).

[46] A. Soare, H. Ball, D. Hayes, J. Sastrawan, M. C. Jarratt, J. J. McLoughlin, X. Zhen, T. J. Green, and M. J. Biercuk. ``Experimental Noise Filtering by Quantum Control''. Nat. Phys. 10, 825–829 (2014).

[47] Harrison Ball, Michael J Biercuk, Andre R R Carvalho, Jiayin Chen, Michael Hush, Leonardo A De Castro, Li Li, Per J Liebermann, Harry J Slatyer, Claire Edmunds, Virginia Frey, Cornelius Hempel, and Alistair Milne. ``Software Tools for Quantum Control: Improving Quantum Computer Performance Through Noise and Error Suppression''. Quantum Sci. Technol. 6, 044011 (2021).

[48] Tianyu Xie, Zhiyuan Zhao, Shaoyi Xu, Xi Kong, Zhiping Yang, Mengqi Wang, Ya Wang, Fazhan Shi, and Jiangfeng Du. ``99.92%-Fidelity CNOT Gates in Solids by Noise Filtering''. Phys. Rev. Lett. 130, 030601 (2023).

[49] Isabel Nha Minh Le, Julian D. Teske, Tobias Hangleiter, Pascal Cerfontaine, and Hendrik Bluhm. ``Analytic Filter-Function Derivatives for Quantum Optimal Control''. Phys. Rev. Appl. 17, 024006 (2022).

[50] Navin Khaneja, Timo Reiss, Cindie Kehlet, Thomas Schulte-Herbrüggen, and Steffen J Glaser. ``Optimal Control of Coupled Spin Dynamics: Design of NMR Pulse Sequences by Gradient Ascent Algorithms''. J. Magn. Reson. 172, 296–305 (2005).

[51] Xinyuan You, Aashish A. Clerk, and Jens Koch. ``Positive- and Negative-Frequency Noise from an Ensemble of Two-Level Fluctuators''. Phys. Rev. Res. 3, 013045 (2021).

[52] Clemens Müller, Jared H Cole, and Jürgen Lisenfeld. ``Towards Understanding Two-Level-Systems in Amorphous Solids: Insights from Quantum Circuits''. Rep. Prog. Phys. 82, 124501 (2019).

[53] D. K. Weiss, Helin Zhang, Chunyang Ding, Yuwei Ma, David I. Schuster, and Jens Koch. ``Fast High-Fidelity Gates for Galvanically-Coupled Fluxonium Qubits Using Strong Flux Modulation''. PRX Quantum 3, 040336 (2022).

[54] Ross Shillito, Jonathan A. Gross, Agustin Di Paolo, Élie Genois, and Alexandre Blais. ``Fast and Differentiable Simulation of Driven Quantum Systems''. Phys. Rev. Res. 3, 033266 (2021).

[55] A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, and M. H. Devoret. ``Stabilization and Operation of a Kerr-Cat Qubit''. Nature 584, 205–209 (2020).

[56] Anton Frisk Kockum, Adam Miranowicz, Simone De Liberato, Salvatore Savasta, and Franco Nori. ``Ultrastrong Coupling Between Light and Matter''. Nat. Rev. Phys. 1, 19–40 (2019).

[57] Alexandre Blais, Arne L. Grimsmo, S. M. Girvin, and Andreas Wallraff. ``Circuit Quantum Electrodynamics''. Rev. Mod. Phys. 93, 025005 (2021).

[58] Paul Heidler, Christian M. F. Schneider, Katja Kustura, Carlos Gonzalez-Ballestero, Oriol Romero-Isart, and Gerhard Kirchmair. ``Non-Markovian Effects of Two-Level Systems in a Niobium Coaxial Resonator with a Single-Photon Lifetime of 10 milliseconds''. Phys. Rev. Appl. 16, 034024 (2021).

Cited by

[1] Ziwen Huang, Taeyoon Kim, Tanay Roy, Yao Lu, Alexander Romanenko, Shaojiang Zhu, and Anna Grassellino, "Fast ZZ-Free Entangling Gates for Superconducting Qubits Assisted by a Driven Resonator", arXiv:2311.01332, (2023).

The above citations are from SAO/NASA ADS (last updated successfully 2024-05-21 08:08:41). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-05-21 08:08:39).