A quantum logic gate for free electrons

Stefan Löffler1, Thomas Schachinger1,2, Peter Hartel3, Peng-Han Lu4,5, Rafal E. Dunin-Borkowski4, Martin Obermair6, Manuel Dries6, Dagmar Gerthsen6, and Peter Schattschneider1,2

1University Service Centre for Transmission Electron Microscopy, TU Wien, Wiedner Hauptstraße 8-10/E057-02, 1040 Wien, Austria
2Institute of Solid State Physics, TU Wien, Wiedner Hauptstraße 8-10/E138-03, 1040 Wien, Austria
3CEOS Corrected Electron Optical Systems GmbH, Englerstraße 28, 69126 Heidelberg, Germany
4Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
5RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany
6Laboratorium für Elektronenmikroskopie (LEM), Karlsruher Institut für Technologie (KIT), Engesserstraße 7, 76131 Karlsruhe, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The topological charge $m$ of vortex electrons spans an infinite-dimensional Hilbert space. Selecting a two-dimensional subspace spanned by $m=\pm 1$, a beam electron in a transmission electron microscope (TEM) can be considered as a quantum bit (qubit) freely propagating in the column. A combination of electron optical quadrupole lenses can serve as a universal device to manipulate such qubits at the experimenter's discretion. We set up a TEM probe forming lens system as a quantum gate and demonstrate its action numerically and experimentally. High-end TEMs with aberration correctors are a promising platform for such experiments, opening the way to study quantum logic gates in the electron microscope.

This proof-of-principle experiment shows that free electrons in a transmission electron microscope (TEM) can be used as qubits, the building blocks for quantum computers. We demonstrate a quantum logic gate which can transform these qubits from one state to another. With a spatial resolution down to atomic dimensions, the TEM is ideally suited for the study of the fundamentals of quantum manipulation. In addition to the possible applications in quantum computing, this study also paves the way for significantly improving the TEM’s efficiency by transforming the electron beam into an optimal quantum state for a given experiment.

► BibTeX data

► References

[1] E. Rotunno, A.H. Tavabi, E. Yucelen, S. Frabboni, R.E. Dunin Borkowski, E. Karimi, B.J. McMorran, and V. Grillo. Electron-beam shaping in the transmission electron microscope: Control of electron-beam propagation along atomic columns. Phys. Rev. Appl., 11 (4): 044072, April 2019. 10.1103/​physrevapplied.11.044072.
https:/​/​doi.org/​10.1103/​physrevapplied.11.044072

[2] J. Hammer, S. Thomas, P. Weber, and P. Hommelhoff. Microwave chip-based beam splitter for low-energy guided electrons. Phys. Rev. Lett., 114 (25): 254801, 2015. 10.1103/​PhysRevLett.114.254801.
https:/​/​doi.org/​10.1103/​PhysRevLett.114.254801

[3] T. Schachinger, S. Löffler, A. Steiger-Thirsfeld, M. Stöger-Pollach, S. Schneider, D. Pohl, B. Rellinghaus, and P. Schattschneider. EMCD with an electron vortex filter: Limitations and possibilities. Ultramicroscopy, 179: 15–23, 2017. 10.1016/​j.ultramic.2017.03.019.
https:/​/​doi.org/​10.1016/​j.ultramic.2017.03.019

[4] J. Verbeeck, H. Tian, and G. Van Tendeloo. How to manipulate nanoparticles with an electron beam? Adv. Mater., 25 (8): 1114–1117, 2013. 10.1002/​adma.201204206.
https:/​/​doi.org/​10.1002/​adma.201204206

[5] S. Franke-Arnold, L. Allen, and M. Padgett. Advances in optical angular momentum. Laser Photonics Rev., 2 (4): 299–313, 2008. 10.1002/​lpor.200810007.
https:/​/​doi.org/​10.1002/​lpor.200810007

[6] A. Babazadeh, M. Erhard, F. Wang, M. Malik, R. Nouroozi, M. Krenn, and A. Zeilinger. High-dimensional single-photon quantum gates: Concepts and experiments. Phys. Rev. Lett., 119: 180510, Nov 2017. 10.1103/​PhysRevLett.119.180510.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.180510

[7] R. Juchtmans, A. Béché, A. Abakumov, M. Batuk, and J. Verbeeck. Using electron vortex beams to determine chirality of crystals in transmission electron microscopy. Phys. Rev. B, 91: 094112, Mar 2015. 10.1103/​PhysRevB.91.094112.
https:/​/​doi.org/​10.1103/​PhysRevB.91.094112

[8] G. M. Vanacore, I. Madan, G. Berruto, K. Wang, E. Pomarico, R. J. Lamb, D. McGrouther, I. Kaminer, B. Barwick, F. J. Garcia De Abajo, and F. Carbone. Attosecond coherent control of free-electron wave functions using semi-infinite light fields. Nat. Commun., 9 (1): 2694, 2018. 10.1038/​s41467-018-05021-x.
https:/​/​doi.org/​10.1038/​s41467-018-05021-x

[9] A. Feist, K.E. Echternkamp, J. Schauss, S.V. Yalunin, S. Schäfer, and C. Ropers. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature, 521 (7551): 200–203, 2015. 10.1038/​nature14463.
https:/​/​doi.org/​10.1038/​nature14463

[10] C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum. All-optical control and metrology of electron pulses. Science, 352 (6284): 429–433, 2016. 10.1126/​science.aae0003.
https:/​/​doi.org/​10.1126/​science.aae0003

[11] N. Schönenberger, A. Mittelbach, P. Yousefi, J. McNeur, U. Niedermayer, and P. Hommelhoff. Generation and characterization of attosecond microbunched electron pulse trains via dielectric laser acceleration. Phys. Rev. Lett., 123 (26): 264803, 2019. 10.1103/​PhysRevLett.123.264803.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.264803

[12] K. Y. Bliokh, Y. P. Bliokh, S. Savel'ev, and F. Nori. Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett., 99 (19), 2007. 10.1103/​PhysRevLett.99.190404.
https:/​/​doi.org/​10.1103/​PhysRevLett.99.190404

[13] K. Y. Bliokh, M. R. Dennis, and F. Nori. Relativistic electron vortex beams: Angular momentum and spin-orbit interaction. Phys. Rev. Lett., 107 (17), 2011. 10.1103/​PhysRevLett.107.174802.
https:/​/​doi.org/​10.1103/​PhysRevLett.107.174802

[14] J. Verbeeck, H. Tian, and P. Schattschneider. Production and application of electron vortex beams. Nature, 467 (7313): 301–304, 2010. 10.1038/​nature09366.
https:/​/​doi.org/​10.1038/​nature09366

[15] M. Uchida and A. Tonomura. Generation of electron beams carrying orbital angular momentum. Nat., 464: 737–739, 04 2010. 10.1038/​nature08904.
https:/​/​doi.org/​10.1038/​nature08904

[16] K.Y. Bliokh, P. Schattschneider, J. Verbeeck, and F. Nori. Electron vortex beams in a magnetic field: A new twist on Landau levels and Aharonov-Bohm states. Phys. Rev. X, 2 (4): 041011, 2012. 10.1103/​PhysRevX.2.041011.
https:/​/​doi.org/​10.1103/​PhysRevX.2.041011

[17] P. Schattschneider, T. Schachinger, M. Stöger-Pollach, S. Löffler, A. Steiger-Thirsfeld, K. Y. Bliokh, and F. Nori. Imaging the dynamics of free-electron Landau states. Nat. Commun., 5: 4586, August 2014. 10.1038/​ncomms5586.
https:/​/​doi.org/​10.1038/​ncomms5586

[18] G. Guzzinati, P. Schattschneider, K. Y. Bliokh, F. Nori, and J. Verbeeck. Observation of the Larmor and Gouy Rotations with Electron Vortex Beams. Phys. Rev. Lett., 110: 093601, February 2013. 10.1103/​PhysRevLett.110.093601.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.093601

[19] T. Schachinger, S. Löffler, M. Stöger-Pollach, and P. Schattschneider. Peculiar rotation of electron vortex beams. Ultramicroscopy, 158: 17–25, November 2015. ISSN 0304-3991. 10.1016/​j.ultramic.2015.06.004.
https:/​/​doi.org/​10.1016/​j.ultramic.2015.06.004

[20] K. Y. Bliokh, I. P. Ivanov, G. Guzzinati, L. Clark, R. Van Boxem, A. Béché, R. Juchtmans, M. A. Alonso, P. Schattschneider, F. Nori, and J. Verbeeck. Theory and applications of free-electron vortex states. Phys. Rep., 690: 1–70, 2017. 10.1016/​j.physrep.2017.05.006.
https:/​/​doi.org/​10.1016/​j.physrep.2017.05.006

[21] M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen. Deterministic generation of a two-dimensional cluster state. Science, 366 (6463): 369–372, 2019. 10.1126/​science.aay4354.
https:/​/​doi.org/​10.1126/​science.aay4354

[22] K. R. Brown, J. Chiaverini, J. M. Sage, and H. Häffner. Materials challenges for trapped-ion quantum computers. Nat. Rev. Mater., 6 (10): 892–905, 2021. 10.1038/​s41578-021-00292-1.
https:/​/​doi.org/​10.1038/​s41578-021-00292-1

[23] M. Kjaergaard, M. E. Schwartz, J. Braumüller, P. Krantz, J. I. . Wang, S. Gustavsson, and W. D. Oliver. Superconducting qubits: Current state of play. Annu. Rev. Conden. Ma. P., 11: 369–395, 2020. 10.1146/​annurev-conmatphys-031119-050605.
https:/​/​doi.org/​10.1146/​annurev-conmatphys-031119-050605

[24] C. E. Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets, M. J. Degen, M. A. Bakker, M. Markham, D. J. Twitchen, and T. H. Taminiau. A ten-qubit solid-state spin register with quantum memory up to one minute. Phys. Rev. X, 9 (3), 2019. 10.1103/​PhysRevX.9.031045.
https:/​/​doi.org/​10.1103/​PhysRevX.9.031045

[25] I. Buluta, S. Ashhab, and F. Nori. Natural and artificial atoms for quantum computation. Rep. Prog. Phys., 74 (10): 104401, sep 2011. 10.1088/​0034-4885/​74/​10/​104401.
https:/​/​doi.org/​10.1088/​0034-4885/​74/​10/​104401

[26] A. Chatterjee, P. Stevenson, S. De Franceschi, A. Morello, N. P. de Leon, and F. Kuemmeth. Semiconductor qubits in practice. Nature Reviews Physics, 3 (3): 157–177, 2021. 10.1038/​s42254-021-00283-9. Cited By :91.
https:/​/​doi.org/​10.1038/​s42254-021-00283-9

[27] O. Reinhardt, C. Mechel, M. Lynch, and I. Kaminer. Free-electron qubits. Ann. Phys., 533 (2): 2000254, 2021. 10.1002/​andp.202000254.
https:/​/​doi.org/​10.1002/​andp.202000254

[28] R. Ruimy, A. Gorlach, C. Mechel, N. Rivera, and I. Kaminer. Toward atomic-resolution quantum measurements with coherently shaped free electrons. Phys. Rev. Lett., 126 (23): 233403, jun 2021. 10.1103/​physrevlett.126.233403.
https:/​/​doi.org/​10.1103/​physrevlett.126.233403

[29] M. V. Tsarev, A. Ryabov, and P. Baum. Free-electron qubits and maximum-contrast attosecond pulses via temporal talbot revivals. Phys. Rev. Research, 3 (4): 043033, oct 2021. 10.1103/​physrevresearch.3.043033.
https:/​/​doi.org/​10.1103/​physrevresearch.3.043033

[30] S. Löffler. Unitary two-state quantum operators realized by quadrupole fields in the electron microscope. Ultramicroscopy, 234: 113456, 2022. 10.1016/​j.ultramic.2021.113456.
https:/​/​doi.org/​10.1016/​j.ultramic.2021.113456

[31] P. Schattschneider, M. Stöger-Pollach, and J. Verbeeck. Novel vortex generator and mode converter for electron beams. Phys. Rev. Lett., 109 (8): 084801, 2012. 10.1103/​PhysRevLett.109.084801.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.084801

[32] T. Schachinger, P. Hartel, P. Lu, S. Löffler, M. Obermair, M. Dries, D. Gerthsen, R. E. Dunin-Borkowski, and P. Schattschneider. Experimental realisation of a $\pi/​2$ vortex mode converter for electrons using a spherical aberration corrector. Ultramicroscopy, 229: 113340, 2021. 10.1016/​j.ultramic.2021.113340.
https:/​/​doi.org/​10.1016/​j.ultramic.2021.113340

[33] D. Karlovets. Relativistic vortex electrons: Paraxial versus nonparaxial regimes. Phys. Rev. A, 98: 012137, Jul 2018. 10.1103/​PhysRevA.98.012137.
https:/​/​doi.org/​10.1103/​PhysRevA.98.012137

[34] L. Clark, A. Béché, G. Guzzinati, and J. Verbeeck. Quantitative measurement of orbital angular momentum in electron microscopy. Physical Review A - Atomic, Molecular, and Optical Physics, 89 (5): 053818, 2014. 10.1103/​PhysRevA.89.053818.
https:/​/​doi.org/​10.1103/​PhysRevA.89.053818

[35] G. Guzzinati, L. Clark, A. Béché, and J. Verbeeck. Measuring the orbital angular momentum of electron beams. Physical Review A - Atomic, Molecular, and Optical Physics, 89 (2): 025803, 2014. 10.1103/​PhysRevA.89.025803.
https:/​/​doi.org/​10.1103/​PhysRevA.89.025803

[36] B. J. McMorran, T. R. Harvey, and M. P. J. Lavery. Efficient sorting of free electron orbital angular momentum. New J. Phys., 19 (2): 023053, 2017. 10.1088/​1367-2630/​aa5f6f.
https:/​/​doi.org/​10.1088/​1367-2630/​aa5f6f

[37] V. Grillo, A. H. Tavabi, F. Venturi, H. Larocque, R. Balboni, G. C. Gazzadi, S. Frabboni, P. . Lu, E. Mafakheri, F. Bouchard, R. E. Dunin-Borkowski, R. W. Boyd, M. P. J. Lavery, M. J. Padgett, and E. Karimi. Measuring the orbital angular momentum spectrum of an electron beam. Nat. Commun., 8: 15536, 2017. 10.1038/​ncomms15536.
https:/​/​doi.org/​10.1038/​ncomms15536

[38] G. Pozzi, V. Grillo, P. Lu, A. H. Tavabi, E. Karimi, and R. E. Dunin-Borkowski. Design of electrostatic phase elements for sorting the orbital angular momentum of electrons. Ultramicroscopy, 208: 112861, 2020. 10.1016/​j.ultramic.2019.112861.
https:/​/​doi.org/​10.1016/​j.ultramic.2019.112861

[39] A. H. Tavabi, P. Rosi, E. Rotunno, A. Roncaglia, L. Belsito, S. Frabboni, G. Pozzi, G. C. Gazzadi, P. Lu, R. Nijland, M. Ghosh, P. Tiemeijer, E. Karimi, R. E. Dunin-Borkowski, and V. Grillo. Experimental demonstration of an electrostatic orbital angular momentum sorter for electron beams. Phys. Rev. Lett., 126 (9): 094802, mar 2021. 10.1103/​physrevlett.126.094802.
https:/​/​doi.org/​10.1103/​physrevlett.126.094802

[40] G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 105 (15): 153601, 2010. 10.1103/​PhysRevLett.105.153601.
https:/​/​doi.org/​10.1103/​PhysRevLett.105.153601

[41] C. Kramberger, S. Löffler, T. Schachinger, P. Hartel, J. Zach, and P. Schattschneider. π/​2 mode converters and vortex generators for electrons. Ultramicroscopy, 204: 27–33, September 2019. 10.1016/​j.ultramic.2019.05.003.
https:/​/​doi.org/​10.1016/​j.ultramic.2019.05.003

[42] A. Béché, R. Van Boxem, G. Van Tendeloo, and J. Verbeeck. Magnetic monopole field exposed by electrons. Nat. Phys., 10 (1): 26–29, December 2013. ISSN 1745-2481. 10.1038/​nphys2816.
https:/​/​doi.org/​10.1038/​nphys2816

[43] M. Dries, M. Obermair, S. Hettler, P. Hermann, K. Seemann, F. Seifried, S. Ulrich, R. Fischer, and D. Gerthsen. Oxide-free $\text{aC}/​\text{Zr}_{0.65}\text{Al}_{0.075}\text{Cu}_{0.275}/​\text{aC}$ phase plates for transmission electron microscopy. Ultramicroscopy, 189: 39–45, jun 2018. 10.1016/​j.ultramic.2018.03.003.
https:/​/​doi.org/​10.1016/​j.ultramic.2018.03.003

[44] A. Lubk, L. Clark, G. Guzzinati, and J. Verbeeck. Topological analysis of paraxially scattered electron vortex beams. Phys. Rev. A, 87: 033834, March 2013. 10.1103/​PhysRevA.87.033834.
https:/​/​doi.org/​10.1103/​PhysRevA.87.033834

[45] A. Y. Kitaev. Fault-tolerant computation by anyons. Ann. Phys., 303: 2–30, 2003. 10.1016/​S0003-4916(02)00018-0.
https:/​/​doi.org/​10.1016/​S0003-4916(02)00018-0

[46] H. Okamoto. Measurement errors in entanglement-assisted electron microscopy. Physical Review A - Atomic, Molecular, and Optical Physics, 89 (6): 063828, 2014. 10.1103/​PhysRevA.89.063828.
https:/​/​doi.org/​10.1103/​PhysRevA.89.063828

[47] P. Schattschneider and S. Löffler. Entanglement and decoherence in electron microscopy. Ultramicroscopy, 190: 39–44, 2018. 10.1016/​j.ultramic.2018.04.007.
https:/​/​doi.org/​10.1016/​j.ultramic.2018.04.007

[48] P. Schattschneider, S. Löffler, H. Gollisch, and R. Feder. Entanglement and entropy in electron–electron scattering. J. Electron Spectrosc. Relat. Phenom., 241: 146810, 2020. 10.1016/​j.elspec.2018.11.009.
https:/​/​doi.org/​10.1016/​j.elspec.2018.11.009

[49] R. Haindl, A. Feist, T. Domröse, M. Möller, J. H. Gaida, S. V. Yalunin, and C. Ropers. Coulomb-correlated electron number states in a transmission electron microscope beam. Nature Physics, 2023. 10.1038/​s41567-023-02067-7.
https:/​/​doi.org/​10.1038/​s41567-023-02067-7

[50] S. Meier, J. Heimerl, and P. Hommelhoff. Few-electron correlations after ultrafast photoemission from nanometric needle tips. Nature Physics, 2023. 10.1038/​s41567-023-02059-7.
https:/​/​doi.org/​10.1038/​s41567-023-02059-7

[51] M. Scheucher, T. Schachinger, T. Spielauer, M. Stöger-Pollach, and P. Haslinger. Discrimination of coherent and incoherent cathodoluminescence using temporal photon correlations. Ultramicroscopy, 241: 113594, nov 2022. 10.1016/​j.ultramic.2022.113594.
https:/​/​doi.org/​10.1016/​j.ultramic.2022.113594

[52] A. Konečná, F. Iyikanat, and F. J. García de Abajo. Entangling free electrons and optical excitations. Sci. Adv., 8 (47): eabo7853, nov 2022. 10.1126/​sciadv.abo7853.
https:/​/​doi.org/​10.1126/​sciadv.abo7853

[53] S. Löffler, S. Sack, and T. Schachinger. Elastic propagation of fast electron vortices through amorphous materials. Acta Crystallogr. A, 75 (6): 902–910, 2019. 10.1107/​S2053273319012889.
https:/​/​doi.org/​10.1107/​S2053273319012889

Cited by

[1] Austin G. Nixon, Matthieu Chalifour, Marc R. Bourgeois, Michael Sanchez, and David J. Masiello, "Inelastic scattering of transversely structured free electrons from nanophotonic targets: Theory and computation", Physical Review A 109 4, 043502 (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-15 12:23:00) and SAO/NASA ADS (last updated successfully 2024-04-15 12:23:01). The list may be incomplete as not all publishers provide suitable and complete citation data.