Geometric phases along quantum trajectories

Ludmila Viotti1,2, Ana Laura Gramajo2, Paula I. Villar3, Fernando C. Lombardo3, and Rosario Fazio2,4

1Departamento de Física Juan José Giambiagi, FCEyN UBA Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
2The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
3Departamento de Fí sica Juan José Giambiagi, FCEyN UBA and IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabellón I, 1428 Buenos Aires, Argentina
4Dipartimento di Fisica, Università di Napoli "Federico II'', Monte S. Angelo, I-80126 Napoli, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


A monitored quantum system undergoing a cyclic evolution of the parameters governing its Hamiltonian accumulates a geometric phase that depends on the quantum trajectory followed by the system on its evolution. The phase value will be determined both by the unitary dynamics and by the interaction of the system with the environment. Consequently, the geometric phase will acquire a stochastic character due to the occurrence of random quantum jumps. Here we study the distribution function of geometric phases in monitored quantum systems and discuss when/if different quantities, proposed to measure geometric phases in open quantum systems, are representative of the distribution. We also consider a monitored echo protocol and discuss in which cases the distribution of the interference pattern extracted in the experiment is linked to the geometric phase. Furthermore, we unveil, for the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle and show how this critical behavior can be observed in an echo protocol. For the same parameters, the density matrix does not show any singularity. We illustrate all our main results by considering a paradigmatic case, a spin-1/2 immersed in time-varying a magnetic field in presence of an external environment. The major outcomes of our analysis are however quite general and do not depend, in their qualitative features, on the choice of the model studied.

The geometric phase (GP) accumulated by an isolated quantum system holds significant importance across various domains, ranging from the mathematical foundations of quantum mechanics to the explanation of physical phenomena and even practical applications. While several generalizations have been proposed to incorporate geometric phases in open quantum systems, where the state is described by a density operator undergoing non-unitary evolution, there exists an additional level of description for such systems.

This alternative description of open quantum systems is accessed, for example, when the state of the system is continuously monitored. In this case, the wave function becomes a stochastic variable that follows a different quantum trajectory on each realization of the evolution. The randomness in a given trajectory introduces stochastic characteristics in the GPs. Understanding the fluctuations induced in GPs through indirect monitoring remains largely unexplored. The goal of the present work is therefore to describe the properties of accumulated GP along quantum trajectories.

Our work presents a thorough study of the GPs distribution arising within this framework for the paradigmatic model of a spin-½ particle in a magnetic field, and whether, how, and when it is related to the corresponding distribution in the interference fringes in a spin-echo experiment. We also show that depending on the coupling to the external environment, the monitored quantum system will show a topological transition in the phase accumulated and we argue that this transition is visible in echo dynamics.

► BibTeX data

► References

[1] M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. London, 392 (1802): 45–57, 1984. ISSN 00804630. https:/​/​​10.1098/​rspa.1984.0023.

[2] Y. Aharonov and J. Anandan. Phase change during a cyclic quantum evolution. Phys. Rev. Lett., 58: 1593–1596, Apr 1987. https:/​/​​10.1103/​PhysRevLett.58.1593.

[3] Frank Wilczek and A. Zee. Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett., 52: 2111–2114, Jun 1984. https:/​/​​10.1103/​PhysRevLett.52.2111.

[4] Joseph Samuel and Rajendra Bhandari. General setting for berry's phase. Phys. Rev. Lett., 60: 2339–2342, Jun 1988. https:/​/​​10.1103/​PhysRevLett.60.2339.

[5] N. Mukunda and R. Simon. Quantum kinematic approach to the geometric phase. i. general formalism. Annals of Physics, 228 (2): 205–268, 1993. ISSN 0003-4916. https:/​/​​10.1006/​aphy.1993.1093.

[6] Armin Uhlmann. Parallel transport and “quantum holonomy” along density operators. Reports on Mathematical Physics, 24 (2): 229–240, 1986. ISSN 0034-4877. https:/​/​​10.1016/​0034-4877(86)90055-8.

[7] A. Uhlmann. On berry phases along mixtures of states. Annalen der Physik, 501 (1): 63–69, 1989. https:/​/​​10.1002/​andp.19895010108.

[8] Armin Uhlmann. A gauge field governing parallel transport along mixed states. letters in mathematical physics, 21 (3): 229–236, 1991. https:/​/​​10.1007/​BF00420373.

[9] Erik Sjöqvist, Arun K. Pati, Artur Ekert, Jeeva S. Anandan, Marie Ericsson, Daniel K. L. Oi, and Vlatko Vedral. Geometric phases for mixed states in interferometry. Phys. Rev. Lett., 85: 2845–2849, Oct 2000. https:/​/​​10.1103/​PhysRevLett.85.2845.

[10] K. Singh, D. M. Tong, K. Basu, J. L. Chen, and J. F. Du. Geometric phases for nondegenerate and degenerate mixed states. Phys. Rev. A, 67: 032106, Mar 2003. https:/​/​​10.1103/​PhysRevA.67.032106.

[11] Nicola Manini and F. Pistolesi. Off-diagonal geometric phases. Phys. Rev. Lett., 85: 3067–3071, Oct 2000. https:/​/​​10.1103/​PhysRevLett.85.3067.

[12] Stefan Filipp and Erik Sjöqvist. Off-diagonal geometric phase for mixed states. Phys. Rev. Lett., 90: 050403, Feb 2003. https:/​/​​10.1103/​PhysRevLett.90.050403.

[13] Barry Simon. Holonomy, the quantum adiabatic theorem, and berry's phase. Phys. Rev. Lett., 51: 2167–2170, Dec 1983. https:/​/​​10.1103/​PhysRevLett.51.2167.

[14] Mikio Nakahara. Geometry, topology and physics. CRC press, 2018. https:/​/​​10.1201/​9781315275826.

[15] Arno Bohm, Ali Mostafazadeh, Hiroyasu Koizumi, Qian Niu, and Josef Zwanziger. The Geometric phase in quantum systems: foundations, mathematical concepts, and applications in molecular and condensed matter physics. Springer, 2003. https:/​/​​10.1007/​978-3-662-10333-3.

[16] Dariusz Chruściński and Andrzej Jamiołkowski. Geometric Phases in Classical and Quantum Mechanics, volume 36 of Progress in Mathematical Physics. Birkhäuser Basel, 2004. ISBN 9780817642822. https:/​/​​10.1007/​978-0-8176-8176-0.

[17] Frank Wilczek and Alfred Shapere. Geometric phases in physics, volume 5. World Scientific, 1989. https:/​/​​10.1142/​0613.

[18] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs. Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett., 49: 405–408, Aug 1982. https:/​/​​10.1103/​PhysRevLett.49.405.

[19] B Andrei Bernevig. Topological insulators and topological superconductors. In Topological Insulators and Topological Superconductors. Princeton university press, 2013. https:/​/​​10.1515/​9781400846733.

[20] János K Asbóth, László Oroszlány, and András Pályi. A short course on topological insulators. Lecture notes in physics, 919: 166, 2016. https:/​/​​10.1007/​978-3-319-25607-8.

[21] Paolo Zanardi and Mario Rasetti. Holonomic quantum computation. Physics Letters A, 264 (2-3): 94–99, dec 1999. https:/​/​​10.1016/​s0375-9601(99)00803-8.

[22] Jonathan A. Jones, Vlatko Vedral, Artur Ekert, and Giuseppe Castagnoli. Geometric quantum computation using nuclear magnetic resonance. Nature, 403 (6772): 869–871, feb 2000. https:/​/​​10.1038/​35002528.

[23] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys., 80: 1083–1159, Sep 2008. https:/​/​​10.1103/​RevModPhys.80.1083.

[24] Giuseppe Falci, Rosario Fazio, G. Massimo Palma, Jens Siewert, and Vlatko Vedral. Detection of geometric phases in superconducting nanocircuits. Nature, 407 (6802): 355–358, sep 2000. https:/​/​​10.1038/​35030052.

[25] P. J. Leek, J. M. Fink, A. Blais, R. Bianchetti, M. Göppl, J. M. Gambetta, D. I. Schuster, L. Frunzio, R. J. Schoelkopf, and A. Wallraff. Observation of berry's phase in a solid-state qubit. Science, 318 (5858): 1889–1892, 2007. https:/​/​​10.1126/​science.1149858.

[26] Mikko Möttönen, Juha J. Vartiainen, and Jukka P. Pekola. Experimental determination of the berry phase in a superconducting charge pump. Phys. Rev. Lett., 100: 177201, Apr 2008. https:/​/​​10.1103/​PhysRevLett.100.177201.

[27] Simone Gasparinetti, Simon Berger, Abdufarrukh A Abdumalikov, Marek Pechal, Stefan Filipp, and Andreas J Wallraff. Measurement of a vacuum-induced geometric phase. Science advances, 2 (5): e1501732, 2016. https:/​/​​10.1126/​sciadv.1501732.

[28] Abdufarrukh A Abdumalikov Jr, Johannes M Fink, Kristinn Juliusson, Marek Pechal, Simon Berger, Andreas Wallraff, and Stefan Filipp. Experimental realization of non-abelian non-adiabatic geometric gates. Nature, 496 (7446): 482–485, 2013. https:/​/​​10.1038/​nature12010.

[29] Chao Song, Shi-Biao Zheng, Pengfei Zhang, Kai Xu, Libo Zhang, Qiujiang Guo, Wuxin Liu, Da Xu, Hui Deng, Keqiang Huang, et al. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit. Nature communications, 8 (1): 1–7, 2017. https:/​/​​10.1038/​s41467-017-01156-5.

[30] Y. Xu, Z. Hua, Tao Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Zheng-Yuan Xue, and L. Sun. Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit. Phys. Rev. Lett., 124: 230503, Jun 2020. https:/​/​​10.1103/​PhysRevLett.124.230503.

[31] Dietrich Leibfried, Brian DeMarco, Volker Meyer, David Lucas, Murray Barrett, Joe Britton, Wayne M Itano, B Jelenković, Chris Langer, Till Rosenband, et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature, 422 (6930): 412–415, 2003. https:/​/​​10.1038/​nature01492.

[32] Wang Xiang-Bin and Matsumoto Keiji. Nonadiabatic conditional geometric phase shift with nmr. Phys. Rev. Lett., 87: 097901, Aug 2001. https:/​/​​10.1103/​PhysRevLett.87.097901.

[33] Shi-Liang Zhu and Z. D. Wang. Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett., 89: 097902, Aug 2002. https:/​/​​10.1103/​PhysRevLett.89.097902.

[34] K. Z. Li, P. Z. Zhao, and D. M. Tong. Approach to realizing nonadiabatic geometric gates with prescribed evolution paths. Phys. Rev. Res., 2: 023295, Jun 2020. https:/​/​​10.1103/​PhysRevResearch.2.023295.

[35] Cheng Yun Ding, Li Na Ji, Tao Chen, and Zheng Yuan Xue. Path-optimized nonadiabatic geometric quantum computation on superconducting qubits. Quantum Science and Technology, 7 (1): 015012, 2021. https:/​/​​10.1088/​2058-9565/​ac3621.

[36] Anton Gregefalk and Erik Sjöqvist. Transitionless quantum driving in spin echo. Phys. Rev. Applied, 17: 024012, Feb 2022. https:/​/​​10.1103/​PhysRevApplied.17.024012.

[37] Zhenxing Zhang, Tenghui Wang, Liang Xiang, Jiadong Yao, Jianlan Wu, and Yi Yin. Measuring the berry phase in a superconducting phase qubit by a shortcut to adiabaticity. Phys. Rev. A, 95: 042345, Apr 2017. https:/​/​​10.1103/​PhysRevA.95.042345.

[38] Gabriele De Chiara and G. Massimo Palma. Berry phase for a spin $1/​2$ particle in a classical fluctuating field. Phys. Rev. Lett., 91: 090404, Aug 2003. https:/​/​​10.1103/​PhysRevLett.91.090404.

[39] Robert S. Whitney and Yuval Gefen. Berry phase in a nonisolated system. Phys. Rev. Lett., 90: 190402, May 2003. https:/​/​​10.1103/​PhysRevLett.90.190402.

[40] Robert S. Whitney, Yuriy Makhlin, Alexander Shnirman, and Yuval Gefen. Geometric nature of the environment-induced berry phase and geometric dephasing. Phys. Rev. Lett., 94: 070407, Feb 2005. https:/​/​​10.1103/​PhysRevLett.94.070407.

[41] S. Berger, M. Pechal, A. A. Abdumalikov, C. Eichler, L. Steffen, A. Fedorov, A. Wallraff, and S. Filipp. Exploring the effect of noise on the berry phase. Phys. Rev. A, 87: 060303, Jun 2013. https:/​/​​10.1103/​PhysRevA.87.060303.

[42] Simon Jacques Berger. Geometric phases and noise in circuit QED. PhD thesis, ETH Zurich, 2015.

[43] D. M. Tong, E. Sjöqvist, L. C. Kwek, and C. H. Oh. Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett., 93: 080405, Aug 2004. https:/​/​​10.1103/​PhysRevLett.93.080405.

[44] A. Carollo, I. Fuentes-Guridi, M. França Santos, and V. Vedral. Geometric phase in open systems. Phys. Rev. Lett., 90: 160402, Apr 2003. https:/​/​​10.1103/​PhysRevLett.90.160402.

[45] Carollo Angelo. The quantum trajectory approach to geometric phase for open systems. Modern Physics Letters A, 20 (22): 1635–1654, 2005. https:/​/​​10.1142/​S0217732305017718.

[46] Nikola Burićand Milan Radonjić. Uniquely defined geometric phase of an open system. Phys. Rev. A, 80: 014101, Jul 2009. https:/​/​​10.1103/​PhysRevA.80.014101.

[47] Erik Sjöqvist. On geometric phases for quantum trajectories. arXiv preprint quant-ph/​0608237, 2006. https:/​/​​10.1556/​APH.26.2006.1-2.23.

[48] Angelo Bassi and Emiliano Ippoliti. Geometric phase for open quantum systems and stochastic unravelings. Phys. Rev. A, 73: 062104, Jun 2006. https:/​/​​10.1103/​PhysRevA.73.062104.

[49] J. G. Peixoto de Faria, A. F. R. de Toledo Piza, and M. C. Nemes. Phases of quantum states in completely positive non-unitary evolution. Europhysics Letters, 62 (6): 782, jun 2003. https:/​/​​10.1209/​epl/​i2003-00440-4.

[50] Marie Ericsson, Erik Sjöqvist, Johan Brännlund, Daniel K. L. Oi, and Arun K. Pati. Generalization of the geometric phase to completely positive maps. Phys. Rev. A, 67: 020101, Feb 2003. https:/​/​​10.1103/​PhysRevA.67.020101.

[51] Fernando C. Lombardo and Paula I. Villar. Geometric phases in open systems: A model to study how they are corrected by decoherence. Phys. Rev. A, 74: 042311, Oct 2006. https:/​/​​10.1103/​PhysRevA.74.042311.

[52] Fernando C. Lombardo and Paula I. Villar. Corrections to the berry phase in a solid-state qubit due to low-frequency noise. Phys. Rev. A, 89: 012110, Jan 2014. https:/​/​​10.1103/​PhysRevA.89.012110.

[53] Klaus Mølmer, Yvan Castin, and Jean Dalibard. Monte carlo wave-function method in quantum optics. J. Opt. Soc. Am. B, 10 (3): 524–538, Mar 1993. https:/​/​​10.1364/​JOSAB.10.000524.

[54] Gonzalo Manzano and Roberta Zambrini. Quantum thermodynamics under continuous monitoring: A general framework. AVS Quantum Science, 4 (2), 05 2022. ISSN 2639-0213. https:/​/​​10.1116/​5.0079886. 025302.

[55] Matthew P.A. Fisher, Vedika Khemani, Adam Nahum, and Sagar Vijay. Random quantum circuits. Annual Review of Condensed Matter Physics, 14 (1): 335–379, 2023. https:/​/​​10.1146/​annurev-conmatphys-031720-030658.

[56] Shane P Kelly, Ulrich Poschinger, Ferdinand Schmidt-Kaler, Matthew Fisher, and Jamir Marino. Coherence requirements for quantum communication from hybrid circuit dynamics. arXiv preprint arXiv:2210.11547, 2022. https:/​/​​10.48550/​arXiv.2210.11547.

[57] Zack Weinstein, Shane P Kelly, Jamir Marino, and Ehud Altman. Scrambling transition in a radiative random unitary circuit. arXiv preprint arXiv:2210.14242, 2022. https:/​/​​10.48550/​arXiv.2210.14242.

[58] Valentin Gebhart, Kyrylo Snizhko, Thomas Wellens, Andreas Buchleitner, Alessandro Romito, and Yuval Gefen. Topological transition in measurement-induced geometric phases. Proceedings of the National Academy of Sciences, 117 (11): 5706–5713, 2020. https:/​/​​10.1073/​pnas.1911620117.

[59] Kyrylo Snizhko, Parveen Kumar, Nihal Rao, and Yuval Gefen. Weak-measurement-induced asymmetric dephasing: Manifestation of intrinsic measurement chirality. Phys. Rev. Lett., 127: 170401, Oct 2021a. https:/​/​​10.1103/​PhysRevLett.127.170401.

[60] Kyrylo Snizhko, Nihal Rao, Parveen Kumar, and Yuval Gefen. Weak-measurement-induced phases and dephasing: Broken symmetry of the geometric phase. Phys. Rev. Res., 3: 043045, Oct 2021b. https:/​/​​10.1103/​PhysRevResearch.3.043045.

[61] Yunzhao Wang, Kyrylo Snizhko, Alessandro Romito, Yuval Gefen, and Kater Murch. Observing a topological transition in weak-measurement-induced geometric phases. Phys. Rev. Res., 4: 023179, Jun 2022. https:/​/​​10.1103/​PhysRevResearch.4.023179.

[62] Manuel F Ferrer-Garcia, Kyrylo Snizhko, Alessio D'Errico, Alessandro Romito, Yuval Gefen, and Ebrahim Karimi. Topological transitions of the generalized pancharatnam-berry phase. arXiv preprint arXiv:2211.08519, 2022. https:/​/​​10.48550/​arXiv.2211.08519.

[63] Goran Lindblad. On the generators of quantum dynamical semigroups. Comm. Math. Phys., 48 (2): 119–130, 1976. https:/​/​​10.1007/​BF01608499.

[64] Angel Rivas and Susana F Huelga. Open quantum systems, volume 10. Springer, 2012. https:/​/​​10.1007/​978-3-642-23354-8.

[65] M. S. Sarandy and D. A. Lidar. Adiabatic approximation in open quantum systems. Physical Review A, 71 (1), jan 2005. https:/​/​​10.1103/​physreva.71.012331.

[66] Patrik Thunström, Johan Åberg, and Erik Sjöqvist. Adiabatic approximation for weakly open systems. Phys. Rev. A, 72: 022328, Aug 2005. https:/​/​​10.1103/​PhysRevA.72.022328.

[67] XX Yi, DM Tong, LC Kwek, and CH Oh. Adiabatic approximation in open systems: an alternative approach. Journal of Physics B: Atomic, Molecular and Optical Physics, 40 (2): 281, 2007. https:/​/​​10.1088/​0953-4075/​40/​2/​004.

[68] Ognyan Oreshkov and John Calsamiglia. Adiabatic markovian dynamics. Phys. Rev. Lett., 105: 050503, Jul 2010. https:/​/​​10.1103/​PhysRevLett.105.050503.

[69] Lorenzo Campos Venuti, Tameem Albash, Daniel A. Lidar, and Paolo Zanardi. Adiabaticity in open quantum systems. Phys. Rev. A, 93: 032118, Mar 2016. https:/​/​​10.1103/​PhysRevA.93.032118.

[70] Howard Carmichael. An open systems approach to quantum optics. Lecture Notes in Physics Monographs. Springer Berlin, Heidelberg, 1993. https:/​/​​10.1007/​978-3-540-47620-7.

[71] Howard M. Wiseman and Gerard J. Milburn. Quantum Measurement and Control. Cambridge University Press, 2009. https:/​/​​10.1017/​CBO9780511813948.

[72] Andrew J Daley. Quantum trajectories and open many-body quantum systems. Advances in Physics, 63 (2): 77–149, 2014. https:/​/​​10.1080/​00018732.2014.933502.

[73] G. Passarelli, V. Cataudella, and P. Lucignano. Improving quantum annealing of the ferromagnetic $p$-spin model through pausing. Phys. Rev. B, 100: 024302, Jul 2019. https:/​/​​10.1103/​PhysRevB.100.024302.

[74] KW Murch, SJ Weber, Christopher Macklin, and Irfan Siddiqi. Observing single quantum trajectories of a superconducting quantum bit. Nature, 502 (7470): 211–214, 2013. https:/​/​​10.1038/​nature12539.

[75] Charlene Ahn, Andrew C. Doherty, and Andrew J. Landahl. Continuous quantum error correction via quantum feedback control. Phys. Rev. A, 65: 042301, Mar 2002. https:/​/​​10.1103/​PhysRevA.65.042301.

[76] R. Vijay, D. H. Slichter, and I. Siddiqi. Observation of quantum jumps in a superconducting artificial atom. Phys. Rev. Lett., 106: 110502, Mar 2011. https:/​/​​10.1103/​PhysRevLett.106.110502.

[77] Tameem Albash, Sergio Boixo, Daniel A Lidar, and Paolo Zanardi. Quantum adiabatic markovian master equations. New Journal of Physics, 14 (12): 123016, dec 2012. https:/​/​​10.1088/​1367-2630/​14/​12/​123016.

[78] Tameem Albash, Sergio Boixo, Daniel A Lidar, and Paolo Zanardi. Corrigendum: Quantum adiabatic markovian master equations (2012 new j. phys. 14 123016). New Journal of Physics, 17 (12): 129501, dec 2015. https:/​/​​10.1088/​1367-2630/​17/​12/​129501.

[79] Ka Wa Yip, Tameem Albash, and Daniel A. Lidar. Quantum trajectories for time-dependent adiabatic master equations. Phys. Rev. A, 97: 022116, Feb 2018. https:/​/​​10.1103/​PhysRevA.97.022116.

[80] Patrik Pawlus and Erik Sjöqvist. Hidden parameters in open-system evolution unveiled by geometric phase. Phys. Rev. A, 82: 052107, Nov 2010. https:/​/​​10.1103/​PhysRevA.82.052107.

[81] E. L. Hahn. Spin echoes. Phys. Rev., 80: 580–594, Nov 1950. https:/​/​​10.1103/​PhysRev.80.580.

[82] F. M. Cucchietti, J.-F. Zhang, F. C. Lombardo, P. I. Villar, and R. Laflamme. Geometric phase with nonunitary evolution in the presence of a quantum critical bath. Phys. Rev. Lett., 105: 240406, Dec 2010. https:/​/​​10.1103/​PhysRevLett.105.240406.

[83] Note, a. Real implementations of the protocol require two extra steps. Preparing and measuring the system in the equal-superposition state |ψ(0)⟩ might be quite involved. Instead, the $\sigma_z$-goundstate |0⟩ is prepared and a pulse driving it to |ψ(0)⟩ is applied afterwards. Then, the protocol usually ends with a last spin rotation taking the final state back to the $\sigma_z$ basis, where the actually compute probability is that of being in |0⟩.

[84] Note, b. Different measurement schemes and physical situations can be described using symmetries of the Lindbland equation as a way of generating different unraveling. Given the invariance of Eq. (1) under some joint transformation $W_m\rightarrow W'_m$, $H \rightarrow H'$, the Lindblad evolution of the averaged density matrix $\rho(t)$ is consequently unchanged, while the different possible trajectories may undergo nontrivial changes, therefore describing different scenarios. Such a procedure can be followed to go from direct photodetection to discrete homodyne detection schemes, in which a beam-splitter mixes the output field with an additional coherent field.

[85] H. M. Wiseman and G. J. Milburn. Quantum theory of field-quadrature measurements. Phys. Rev. A, 47: 642–662, Jan 1993. https:/​/​​10.1103/​PhysRevA.47.642.

[86] Ian C. Percival. Quantum state diffusion, measurement and second quantization, volume 261. Cambridge University Press, 1999. https:/​/​​10.1016/​S0375-9601(99)00526-5.

[87] Najmeh Es'haqi-Sani, Gonzalo Manzano, Roberta Zambrini, and Rosario Fazio. Synchronization along quantum trajectories. Phys. Rev. Res., 2: 023101, Apr 2020. https:/​/​​10.1103/​PhysRevResearch.2.023101.

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2024-06-21 22:33:04). On SAO/NASA ADS no data on citing works was found (last attempt 2024-06-21 22:33:05).