Cooperative quantum information erasure

Lorenzo Buffoni1,2 and Michele Campisi3

1Portuguese Quantum Institute, Lisbon, Portugal
2Department of Physics and Astronomy, University of Florence, 50019 Sesto Fiorentino, Italy
3NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We demonstrate an information erasure protocol that resets $N$ qubits at once. The method displays exceptional performances in terms of energy cost (it operates nearly at Landauer energy cost $kT \ln 2$), time duration ($\sim \mu s$) and erasure success rate ($\sim 99,9\%$). The method departs from the standard algorithmic cooling paradigm by exploiting cooperative effects associated to the mechanism of spontaneous symmetry breaking which are amplified by quantum tunnelling phenomena. Such cooperative quantum erasure protocol is experimentally demonstrated on a commercial quantum annealer and could be readily applied in next generation hybrid gate-based/quantum-annealing quantum computers, for fast, effective, and energy efficient initialisation of quantum processing units.

Presentation of some early results of this work at the Quantum Thermodynamics Conference 2022 by Michele Campisi

For a quantum computation to be effective one needs to reset the quantum logical units, the so-called qubits, in well defined states. The larger the number of qubits participating in a quantum computation the more precise should be the resetting, for the computation to be reliable.

The reset operation is typically performed on each qubit individually. In our work instead many qubits are collectively reset at once, by means of a mechanism which we dub “cooperative quantum information erasure". Here the qubits are let interact during the resetting procedure, in such a way that they cooperatively foster each-other’s resetting. Furthermore, our finding suggest that adding a bit of quantumness can greatly enhance the quality of the resetting.

The method was demonstrated on a real quantum computer and was observed to yield exceptional results in terms of precision, execution time and energy consumption.

► BibTeX data

► References

[1] https:/​/​​docs/​latest/​index.html, Visited on 2022.

[2] Alexia Auffèves. Quantum technologies need a quantum energy initiative. PRX Quantum, 3: 020101, 2022. 10.1103/​PRXQuantum.3.020101.

[3] J. Baugh, O. Moussa, C. A. Ryan, A. Nayak, and R. Laflamme. Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance. Nature, 438 (7067): 470–473, 2005. 10.1038/​nature04272. URL https:/​/​​10.1038/​nature04272.

[4] Marcello Benedetti, John Realpe-Gómez, Rupak Biswas, and Alejandro Perdomo-Ortiz. Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning. Physical Review A, 94 (2): 022308, 2016. 10.1103/​PhysRevA.94.022308. URL https:/​/​​10.1103/​PhysRevA.94.022308.

[5] A. Bérut, A. Petrosyan, and S. Ciliberto. Detailed jarzynski equality applied to a logically irreversible procedure. 103: 60002, 2013. 10.1209/​0295-5075/​103/​60002.

[6] Antoine Berut, Artak Arakelyan, Artyom Petrosyan, Sergio Ciliberto, Raoul Dillenschneider, and Eric Lutz. Experimental verification of Landauer's principle linking information and thermodynamics. Nature, 483 (7388): 187–189, 2012. https:/​/​​10.1038/​nature10872.

[7] Antoine Bérut, Artyom Petrosyan, and Sergio Ciliberto. Information and thermodynamics: experimental verification of Landauer's erasure principle. J. Stat. Mech.: Theory Exp., 2015: P06015, 2015. 10.1088/​1742-5468/​2015/​06/​p06015.

[8] Lorenzo Buffoni and Michele Campisi. Spontaneous fluctuation-symmetry breaking and the Landauer principle. J. Stat. Phys., 186 (2): 31, 2022. 10.1007/​s10955-022-02877-8. URL https:/​/​​10.1007/​s10955-022-02877-8.

[9] Lorenzo Buffoni, Stefano Gherardini, Emmanuel Zambrini Cruzeiro, and Yasser Omar. Third law of thermodynamics and the scaling of quantum computers. Phys. Rev. Lett., (129): 150602, 2022. 10.1103/​PhysRevLett.129.150602. URL https:/​/​​10.1103/​PhysRevLett.129.150602.

[10] J. I. Cirac, A. K. Ekert, and C. Macchiavello. Optimal purification of single qubits. Phys. Rev. Lett., 82: 4344–4347, 1999. 10.1103/​PhysRevLett.82.4344.

[11] Massimiliano Esposito, Katja Lindenberg, and Christian Van den Broeck. Entropy production as correlation between system and reservoir. New J. Phys., 12: 013013, 2010. 10.1088/​1367-2630/​12/​1/​013013.

[12] Marco Fellous-Asiani, Jing Hao Chai, Robert S Whitney, Alexia Auffèves, and Hui Khoon Ng. Limitations in quantum computing from resource constraints. PRX Quantum, 2 (4): 040335, 2021. 10.1103/​PRXQuantum.2.040335. URL https:/​/​/​10.1103/​PRXQuantum.2.040335.

[13] José Fernandez, Seth Lloyd, Tal Mor, and Vwani Roychowdhury. Algorithmic cooling of spins: a practicable method for increasing polarization. International Journal of Quantum Information, 02: 461–477, 2004. URL https:/​/​​10.1142/​S0219749904000419.

[14] R. Gaudenzi, E. Burzurí, S. Maegawa, H. S. J. van der Zant, and F. Luis. Quantum Landauer erasure with a molecular nanomagnet. Nat. Phys., 14 (6): 565–568, 2018. 10.1038/​s41567-018-0070-7.

[15] Momčilo Gavrilov and John Bechhoefer. Erasure without work in an asymmetric double-well potential. Phys. Rev. Lett., 117: 200601, 2016. 10.1103/​PhysRevLett.117.200601.

[16] Momčilo Gavrilov, Raphaël Chétrite, and John Bechhoefer. Direct measurement of weakly nonequilibrium system entropy is consistent with Gibbs-Shannon form. Proceedings of the National Academy of Science, 114 (42): 11097–11102, 2017. 10.1073/​pnas.1708689114.

[17] N. Goldenfeld. Lectures On Phase Transitions And The Renormalization Group. CRC Press, Boca Raton, 1st edition, 1992. https:/​/​​10.1201/​9780429493492.

[18] Rolf Landauer. Irreversibility and heat generation in the computing process. IBM J. Res. Dev., 5 (3): 183–191, 1961. 10.1147/​rd.53.0183.

[19] Umesh V. Vazirani Leonard J. Schulman. Molecular scale heat engines and scalable quantum computation. In STOC '99 Proceedings of the thirty-first annual ACM symposium on theory of computing, pages 322–329, 1999. 10.1145/​301250.301332.

[20] K. Likharev. Dynamics of some single flux quantum devices: I. parametric quantron. IEEE Transactions on Magnetics, 13 (1): 242–244, 1977. 10.1109/​TMAG.1977.1059351.

[21] Juan M. R. Parrondo. The Szilard engine revisited: Entropy, macroscopic randomness, and symmetry breaking phase transitions. Chaos, 11 (3): 725–733, 2001. 10.1063/​1.1388006.

[22] Barbara Piechocinska. Information erasure. Phys. Rev. A, 61: 062314, May 2000. 10.1103/​PhysRevA.61.062314. URL https:/​/​​10.1103/​PhysRevA.61.062314.

[23] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2: 79, 2018. 10.22331/​q-2018-08-06-79.

[24] Karel Proesmans, Jannik Ehrich, and John Bechhoefer. Finite-time landauer principle. Phys. Rev. Lett., 125: 100602, 2020. 10.1103/​PhysRevLett.125.100602.

[25] Olli-Pentti Saira, Matthew H. Matheny, Raj Katti, Warren Fon, Gregory Wimsatt, James P. Crutchfield, Siyuan Han, and Michael L. Roukes. Nonequilibrium thermodynamics of erasure with superconducting flux logic. Phys. Rev. Research, 2: 013249, 2020. 10.1103/​PhysRevResearch.2.013249.

[26] Leonard J. Schulman, Tal Mor, and Yossi Weinstein. Physical limits of heat-bath algorithmic cooling. Phys. Rev. Lett., 94: 120501, 2005. 10.1103/​PhysRevLett.94.120501.

[27] Andrea Solfanelli, Alessandro Santini, and Michele Campisi. Quantum thermodynamic methods to purify a qubit on a quantum processing unit. AVS Quantum Science, 4 (2): 026802, 2022. 10.1116/​5.0091121.

[28] Philip Taranto, Faraj Bakhshinezhad, Andreas Bluhm, Ralph Silva, Nicolai Friis, Maximilian P. E. Lock, Giuseppe Vitagliano, Felix C. Binder, Tiago Debarba, Emanuel Schwarzhans, Fabien Clivaz, and Marcus Huber. Landauer vs. Nernst: What is the True Cost of Cooling a Quantum System? arXiv:2106.05151, 2021. URL https:/​/​​10.48550/​arXiv.2106.05151.

Cited by

[1] Lea Gassab, Onur Pusuluk, and Özgür E. Müstecaplıoğlu, "Geometrical optimization of spin clusters for the preservation of quantum coherence", Physical Review A 109 1, 012424 (2024).

[2] Alberto Rolandi, Paolo Abiuso, and Martí Perarnau-Llobet, "Collective Advantages in Finite-Time Thermodynamics", Physical Review Letters 131 21, 210401 (2023).

[3] Lorenzo Buffoni, Francesco Coghi, and Stefano Gherardini, "Generalized Landauer bound from absolute irreversibility", Physical Review E 109 2, 024138 (2024).

[4] Marcus V. S. Bonança, "Information erasure through quantum many-body effects", Quantum Views 7, 73 (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-19 01:45:45) and SAO/NASA ADS (last updated successfully 2024-04-19 01:45:46). The list may be incomplete as not all publishers provide suitable and complete citation data.