Optimized Quantum Networks

Jorge Miguel-Ramiro, Alexander Pirker, and Wolfgang Dür

Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


The topology of classical networks is determined by physical links between nodes, and after a network request the links are used to establish the desired connections. Quantum networks offer the possibility to generate different kinds of entanglement prior to network requests, which can substitute links and allow one to fulfill multiple network requests with the same resource state. We utilize this to design entanglement-based quantum networks tailored to their desired functionality, independent of the underlying physical structure. The kind of entanglement to be stored is chosen to fulfill all desired network requests (i.e. parallel bipartite or multipartite communications between specific nodes chosen from some finite set), but in such a way that the storage requirement is minimized. This can be accomplished by using multipartite entangled states shared between network nodes that can be transformed by local operations to different target states. We introduce a clustering algorithm to identify connected clusters in the network for a given desired functionality, i.e. the required network topology of the entanglement-based network, and a merging algorithm that constructs multipartite entangled resource states with reduced memory requirement to fulfill all desired network requests. This leads to a significant reduction in required time and resources, and provides a powerful tool to design quantum networks that is unique to entanglement-based networks.

► BibTeX data

► References

[1] H. J. Kimble, Nature 453, 1023 (2008).

[2] W. Kozlowski and S. Wehner, Proceedings of the Sixth Annual ACM International Conference on Nanoscale Computing and Communication 3, 1 (2019).

[3] K. Azuma, S. Bäuml, T. Coopmans, D. Elkouss, and B. Li, AVS Quantum Science 3, 014101 (2021).

[4] A. Pirker, J. Wallnöfer, and W. Dür, New J. Phys. 20, 053054 (2018).

[5] A. Pirker and W. Dür, New J. Phys. 21, 033003 (2019).

[6] C. Meignant, D. Markham, and F. Grosshans, Phys. Rev. A 100, 052333 (2019).

[7] L. Gyongyosi and S. Imre, Scientific Reports 9, 2219 (2019).

[8] J. Miguel-Ramiro and W. Dür, New J. Phys. 22, 043011 (2020).

[9] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

[10] Z. Eldredge, M. Foss-Feig, J. A. Gross, S. L. Rolston, and A. V. Gorshkov, Phys. Rev. A 97, 042337 (2018).

[11] P. Sekatski, S. Wölk, and W. Dür, Phys. Rev. Research 2, 023052 (2020).

[12] J. I. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello, Phys. Rev. A 59, 4249 (1999).

[13] A. S. Cacciapuoti, M. Caleffi, F. Tafuri, F. S. Cataliotti, S. Gherardini, and G. Bianchi, IEEE Network 34, 137 (2020).

[14] Y. Matsuzaki, S. C. Benjamin, and J. Fitzsimons, Phys. Rev. Lett. 104, 050501 (2010).

[15] R. Van Meter, J. Touch, and C. Horsman, Progress in Informatics 8, 65 (2011).

[16] M. Epping, H. Kampermann, and D. Bruß, New J. Phys. 18, 053036 (2016a).

[17] S. Wehner, D. Elkouss, and R. Hanson, Science 362, eaam9288 (2018).

[18] S. Pirandola, Communications Physics 2, 51 (2019).

[19] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

[20] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992).

[21] M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A 69, 062311 (2004a).

[22] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Nest, and H. Briegel, in Quantum Computers, Algorithms and Chaos, Proceedings of the International School of Physics “Enrico Fermi,” Vol. 162, Varenna, 2005, edited by G. Casati, D. L. Shepelyansky, P. Zoller, and G. Benenti (IOS Press, Amsterdam 162, 10.3254/​978-1-61499-018-5-115 (2006).

[23] J. Miguel-Ramiro, A. Pirker, and W. Dür, npj Quantum Information 7, 135 (2021).

[24] F. Hahn, A. Pappa, and J. Eisert, npj Quantum Information 5, 76 (2019).

[25] A. Dahlberg and S. Wehner, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, 20170325 (2018).

[26] A. Dahlberg, J. Helsen, and S. Wehner, Quantum 4, 348 (2020).

[27] J. L. Gross and J. Yellen, Graph Theory and Its Applications. (2nd Edition). Chapman and Hall/​CRC (2005).

[28] K. Das, Computers & Mathematics with Applications 48, 715 (2004).

[29] U. von Luxburg, Statistics and Computing 17, 395 (2007).

[30] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 81, 5932 (1998).

[31] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, Phys. Rev. A 59, 169 (1999).

[32] R. Meter and J. Touch, IEEE Communications Magazine 51, 64 (2013).

[33] R. Van Meter, T. Satoh, T. D. Ladd, W. J. Munro, and K. Nemoto, Networking Science 3, 82 (2013).

[34] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus, M. D. Lukin, and L. Jiang, Scientific reports 6, 20463 (2016).

[35] S. Pirandola, R. Laurenza, C. Ottaviani, and L. Banchi, Nat. Commun. 8, 15043 (2017).

[36] M. Cuquet and J. Calsamiglia, Phys. Rev. A 86, 042304 (2012).

[37] M. Epping, H. Kampermann, and D. Bruß, New J. Phys. 18, 103052 (2016b).

[38] S. Khatri, C. T. Matyas, A. U. Siddiqui, and J. P. Dowling, Phys. Rev. Research 1, 023032 (2019).

[39] M. Epping, H. Kampermann, C. macchiavello, and D. Bruß, New J. Phys. 19, 093012 (2017).

[40] E. Schoute, L. Mancinska, T. Islam, I. Kerenidis, and S. Wehner, arXiv preprint arXiv:1610.05238 (2016).

[41] L. Gyongyosi and S. Imre, Scientific Reports 7, 14255 (2017).

[42] L. Gyongyosi and S. Imre, Phys. Rev. A 98, 022310 (2018).

[43] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, npj Quantum Information 5, 25 (2019).

[44] K. Chakraborty, A. Dahlberg, F. Rozpedek, and S. Wehner, preprint arXiv: 1907.11630 (2019).

[45] A. Likas, N. Vlassis, and J. J. Verbeek, Pattern Recognition 36, 451 (2003).

[46] T. Satoh, K. Ishizaki, S. Nagayama, and R. Van Meter, Phys. Rev. A 93, 032302 (2016).

[47] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, ACM SIGMETRICS Performance Evaluation Review 47, 27 (2019).

[48] G. Vardoyan, S. Guha, P. Nain, and D. Towsley, Performance Evaluation 144, 102141 (2020).

[49] T. Coopmans, R. Knegjens, A. Dahlberg, D. Maier, L. Nijsten, J. de Oliveira Filho, M. Papendrecht, J. Rabbie, F. Rozpędek, M. Skrzypczyk, L. Wubben, W. de Jong, D. Podareanu, A. Torres-Knoop, D. Elkouss, and S. Wehner, Communications Physics 4, 164 (2021).

[50] J. Eisert and H. J. Briegel, Phys. Rev. A 64, 022306 (2001).

[51] M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A 69, 062311 (2004b).

Cited by

[1] Lane G. Gunderman, Andrew Jena, and Luca Dellantonio, "Minimal qubit representations of Hamiltonians via conserved charges", Physical Review A 109 2, 022618 (2024).

[2] Zongyi Li, Yuzhen Wei, Shibei Xue, Min Jiang, and Yongcheng Li, "Bilateral fault-tolerant qudit teleportation in multi-hop quantum networks", Physica Scripta 99 5, 055112 (2024).

[3] Aakash Warke, Kishore Thapliyal, and Anirban Pathak, "Quantum networks using counterfactual quantum communication", Physica Scripta 99 6, 065110 (2024).

[4] Maria Flors Mor-Ruiz and Wolfgang Dür, "Noisy stabilizer formalism", Physical Review A 107 3, 032424 (2023).

[5] Maria Flors Mor-Ruiz and Wolfgang Dür, "Influence of Noise in Entanglement-Based Quantum Networks", IEEE Journal on Selected Areas in Communications 42 7, 1793 (2024).

[6] Sergey Bravyi, Yash Sharma, Mario Szegedy, and Ronald de Wolf, "Generating k EPR-pairs from an n-party resource state", Quantum 8, 1348 (2024).

[7] Alexander Pickston, Joseph Ho, Andrés Ulibarrena, Federico Grasselli, Massimiliano Proietti, Christopher L. Morrison, Peter Barrow, Francesco Graffitti, and Alessandro Fedrizzi, "Conference key agreement in a quantum network", npj Quantum Information 9 1, 82 (2023).

[8] Zhaofang Bai and Shuanping Du, "Network mechanism for generating genuinely correlative Gaussian states", Journal of Physics Communications (2024).

[9] Yu Bao, Yi-Ran Xiao, Yu-Chen Song, Xiao-Yu Cao, Yao Fu, Hua-Lei Yin, and Zeng-Bing Chen, "Efficient source-independent quantum conference key agreement", Optics Express 32 14, 24629 (2024).

[10] Stav Haldar, Pratik J. Barge, Sumeet Khatri, and Hwang Lee, "Fast and reliable entanglement distribution with quantum repeaters: Principles for improving protocols using reinforcement learning", Physical Review Applied 21 2, 024041 (2024).

[11] Jessica Illiano, Marcello Caleffi, Antonio Manzalini, and Angela Sara Cacciapuoti, "Quantum Internet Protocol Stack: a Comprehensive Survey", arXiv:2202.10894, (2022).

[12] Pritam Halder, Ratul Banerjee, Srijon Ghosh, Amit Kumar Pal, and Aditi SenDe, "Circulating genuine multiparty entanglement in a quantum network", Physical Review A 106 3, 032604 (2022).

[13] Pritam Halder, Ratul Banerjee, Shiladitya Mal, and Aditi Sen De, "Manifestation of Rank-Tuned Weak Measurements Towards Featured State Generation", arXiv:2208.09317, (2022).

[14] Maxime Cautrès, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, and Stéphan Thomassé, "Vertex-minor universal graphs for generating entangled quantum subsystems", arXiv:2402.06260, (2024).

[15] Nathan Claudet, Mehdi Mhalla, and Simon Perdrix, "Small k-pairable states", arXiv:2309.09956, (2023).

[16] Seid Koudia, "The Quantum Internet: an Efficient Stabilizer states Distribution Scheme", arXiv:2305.02656, (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-07-15 11:18:31) and SAO/NASA ADS (last updated successfully 2024-07-15 11:18:32). The list may be incomplete as not all publishers provide suitable and complete citation data.