Entanglement-enhanced test proposal for local Lorentz-symmetry violation via spinor atoms

Min Zhuang1, Jiahao Huang2,3, and Chaohong Lee1,2,3

1College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University (Zhuhai Campus), Zhuhai 519082, China
3State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University (Guangzhou Campus), Guangzhou 510275, China

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Invariance under Lorentz transformations is fundamental to both the standard model and general relativity. Testing Lorentz-symmetry violation (LSV) via atomic systems attracts extensive interests in both theory and experiment. In several test proposals, the LSV violation effects are described as a local interaction and the corresponding test precision can asymptotically reach the Heisenberg limit via increasing quantum Fisher information (QFI), but the limited resolution of collective observables prevents the detection of large QFI. Here, we propose a multimode many-body quantum interferometry for testing the LSV parameter $\kappa$ via an ensemble of spinor atoms. By employing an $N$-atom multimode GHZ state, the test precision can attain the Heisenberg limit $\Delta \kappa \propto 1/(F^2N)$ with the spin length $F$ and the atom number $N$. We find a realistic observable (i.e. practical measurement process) to achieve the ultimate precision and analyze the LSV test via an experimentally accessible three-mode interferometry with Bose condensed spin-$1$ atoms for example. By selecting suitable input states and unitary recombination operation, the LSV parameter $\kappa$ can be extracted via realizable population measurement. Especially, the measurement precision of the LSV parameter $\kappa$ can beat the standard quantum limit and even approach the Heisenberg limit via spin mixing dynamics or driving through quantum phase transitions. Moreover, the scheme is robust against nonadiabatic effect and detection noise. Our test scheme may open up a feasible way for a drastic improvement of the LSV tests with atomic systems and provide an alternative application of multi-particle entangled states.

Invariance under Lorentz transformations is fundamental to both the standard model and general relativity. Testing Lorentz-symmetry violation (LSV) via atomic systems attracts extensive interests in both theory and experiment. Here, we propose a multimode many-body quantum interferometry for testing the LSV parameter via an ensemble of spinor atoms. By employing an N-atom multimode GHZ state, the test precision can attain the Heisenberg limit . We find a realistic observable (i.e. practical measurement process) to achieve the ultimate precision and analyze the LSV test via an experimentally accessible three-mode interferometry with Bose condensed spin-1 atoms for example. By selecting suitable input states and unitary recombination operation, the LSV parameter can be extracted via realizable population measurement. Especially, the measurement precision of the LSV parameter can beat the standard quantum limit and even approach the Heisenberg limit via spin mixing dynamics or driving through quantum phase transitions. Moreover, the scheme is robust against nonadiabatic effect and detection noise. Our test scheme may open up a feasible way for a drastic improvement of the LSV tests with atomic systems and provide an alternative application of multi-particle entangled states.

► BibTeX data

► References

[1] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, 1970).
https:/​/​doi.org/​10.1002/​asna.19752960110

[2] D. Mattingly, Living Rev. Relativity 8, 5 (2005).
https:/​/​doi.org/​10.12942/​lrr-2005-5

[3] S. Liberati and L. Maccione, Annu. Rev. Nucl. Part. Sci. 59, 245 (2009).
https:/​/​doi.org/​10.1146/​annurev.nucl.010909.083640

[4] S. Liberati, Class. Quantum Gravity 30, 133001 (2013).
https:/​/​doi.org/​10.1088/​0264-9381/​30/​13/​133001

[5] J. D. Tasson, Rep. Prog. Phys. 77, 062901 (2014).
https:/​/​doi.org/​10.1088/​0034-4885/​77/​6/​062901

[6] M. Pospelov, Y. Shang, Phys. Rev. D 85, 105001 (2012).
https:/​/​doi.org/​10.1103/​PhysRevD.85.105001

[7] V. A. Kostelecký and N. Russell, Rev. Mod. Phys. 83, 11 (2011).
https:/​/​doi.org/​10.1103/​RevModPhys.83.11

[8] V. A. Kostelecký and R. Potting, Phys. Rev. D 51, 3923 (1995).
https:/​/​doi.org/​10.1103/​PhysRevD.51.3923

[9] D. Colladay and V. A. Kostelecký, Phys. Rev. D 55, 6760 (1997).
https:/​/​doi.org/​10.1103/​PhysRevD.55.6760

[10] D. Colladay and V. A. Kostelecký, Phys. Rev. D 58, 116002 (1998).
https:/​/​doi.org/​10.1103/​PhysRevD.58.116002

[11] V.A. Kostelecký, Phys. Rev. D 69, 105009 (2004).
https:/​/​doi.org/​10.1103/​PhysRevD.69.105009

[12] V. A. Kostelecký and J. D. Tasson, Phys. Rev. D 83, 016013 (2011).
https:/​/​doi.org/​10.1103/​PhysRevD.83.016013

[13] P. Hořava, Phys. Rev. D 79, 084008 (2009).
https:/​/​doi.org/​10.1103/​PhysRevD.79.084008

[14] V.A. Kostelecký, and S. Samuel, Phys. Rev. D 39, 683 (1989).
https:/​/​doi.org/​10.1103/​PhysRevD.39.683

[15] R. Gambini, and J. Pullin, Phys. Rev. D 59, 124021 (1999).
https:/​/​doi.org/​10.1103/​PhysRevD.59.124021

[16] S. G. Nibbelink, M. Pospelov, Phys. Rev. Lett. 94, 081601 (2005).
https:/​/​doi.org/​10.1103/​PhysRevLett.94.081601

[17] M. R. Douglas, and N. A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001).
https:/​/​doi.org/​10.1103/​RevModPhys.73.977

[18] O. Bertolami, R. Lehnert, R. Potting, and A. Ribeiro, Phys. Rev. D 69, 083513 (2004).
https:/​/​doi.org/​10.1103/​PhysRevD.69.083513

[19] R. C. Myers, and M. Pospelov, Phys. Rev. Lett. 90, 211601 (2003).
https:/​/​doi.org/​10.1103/​PhysRevLett.90.211601

[20] M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, Rev. Mod. Phys. 90, 025008 (2018).
https:/​/​doi.org/​10.1103/​RevModPhys.90.025008

[21] M. A. Hohensee, N. Leefer, D. Budker, C. Harabati, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. Lett. 111, 050401 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.111.050401

[22] T. Pruttivarasin, M. Ramm, S. G. Porsev, I. Tupitsyn, M. S. Safronova, M. A. Hohensee, and H. Häffner, Nature (London) 517, 592 (2015).
https:/​/​doi.org/​10.1038/​nature14091

[23] V. A. Dzuba, V. V. Flambaum, M. S. Safronova, S. G. Porsev, T. Pruttivarasin, M. A. Hohensee, and H. Häffner, Nat. Phys 12, 465 (2016).
https:/​/​doi.org/​10.1038/​nphys3610

[24] R. Shaniv, R. Ozeri, M. S. Safronova, S. G. Porsev, V. A. Dzuba, V. V. Flambaum, and H. Häffner, Phys. Rev. Lett. 120, 103202 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.120.103202

[25] V. A. Kostelecký, C. Lane, Phys. Rev. D 60, 116010 (1999).
https:/​/​doi.org/​10.1103/​PhysRevD.60.116010

[26] L. Li, X. Li, B. Zhang and L. You, Phys. Rev. A 99, 042118 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.042118

[27] V. A. Kostelecký and C. D. Lane, J. Math. Phys. (NY) 40, 6245 (1999).
https:/​/​doi.org/​10.1063/​1.533090

[28] J. J. Bollinger, W. M. Itano, and D. J. Wineland, Phys. Rev. A 54, R4649 (1996).
https:/​/​doi.org/​10.1103/​PhysRevA.54.R4649

[29] T. Monz, P. Schindler, J. T. Barreiro, M. Chwalla, D. Nigg, W. A. Coish, M. Harlander, W. Hänsel, M. Hennrich, and R. Blat, Phys. Rev. Lett. 106, 130506 (2011).
https:/​/​doi.org/​10.1103/​PhysRevLett.106.130506

[30] J. Huang, X. Qin, H. Zhong, Y. Ke, and C. Lee, Sci. Rep. 5, 17894 (2015).
https:/​/​doi.org/​10.1038/​srep17894

[31] C. Lee, Phys. Rev. Lett. 97, 150402 (2006).
https:/​/​doi.org/​10.1103/​PhysRevLett.97.150402

[32] C. Lee, Phys. Rev. Lett. 102, 070401 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.102.070401

[33] S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, Phys. Rev. A 78, 063828 (2008).
https:/​/​doi.org/​10.1103/​PhysRevA.78.063828

[34] C. Lee, J. Huang, H. Deng, H. Dai, and J. Xu, Front. Phys. 7, 109 (2012).
https:/​/​doi.org/​10.1007/​s11467-011-0228-6

[35] Y. Kawaguchia, M. Ueda, Phys. Rep. 520, 253 (2012).
https:/​/​doi.org/​10.1016/​j.physrep.2012.07.005

[36] M. Zhuang, J. Huang, and C. Lee, Phys. Rev. A. 98, 033603 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.033603

[37] S. C. Burd, R. Srinivas, J. J. Bollinger, A. C. Wilson, D. J. Wineland, D. Leibfried, D. H. Slichter, D. T. C. Allcock, Science 364, 1163 (2019).
https:/​/​doi.org/​10.1126/​science.aaw2884

[38] D. Linnemann, H. Strobel, W. Muessel, J. Schulz, R. J. Lewis-Swan, K. V. Kheruntsyan, and M. K. Oberthaler, Phys. Rev. Lett. 117, 013001 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.013001

[39] O. Hosten, R. Krishnakumar, N. J. Engelsen, M. A. Kasevich, Science 352, 6293 (2016).
https:/​/​doi.org/​10.1126/​science.aaf3397

[40] S. S. Mirkhalaf, S. P. Nolan, and S. A. Haine, Phys. Rev. A 97, 053618 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.053618

[41] F. Fröwis, P. Sekatski, and W. Dür, Phys. Rev. Lett. 116, 090801 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.116.090801

[42] S. S. Szigeti, R. J. Lewis-Swan, and S. A. Haine, Phys. Rev. Lett. 118, 150401 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.150401

[43] J. Huang, M. Zhuang, B. Lu, Y. Ke, and C. Lee, Phys. Rev. A 98, 012129 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.012129

[44] J. Huang, M. Zhuang, and C. Lee, Phys. Rev. A 97, 032116 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.032116

[45] F. Anders, L. Pezzè, A. Smerzi, and C. Klempt, Phys. Rev. A 97, 043813 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.043813

[46] T. Jacobson, arXiv:0801.1547 (2007).
https:/​/​doi.org/​10.1142/​9789812779519_0014
arXiv:0801.1547

[47] D. Blas, O. Pujolàs, and S. Sibiryakov, Phys. Rev. Lett 104, 181302 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.104.181302

[48] A. A. Ungar, Symmetry 12, 1259 (2020).
https:/​/​doi.org/​10.3390/​sym12081259

[49] T. P. Heavner, S. R. Jefferts,E. A. Donley, J. H. Shirley and T. E. Parker, Metrologia 42, 411 (2005).
https:/​/​doi.org/​10.1088/​0026-1394/​42/​5/​012

[50] S. Weyers, V. Gerginov, N. Nemitz, R. Li and K. Gibble, Metrologia 49, 82 (2012).
https:/​/​doi.org/​10.1088/​0026-1394/​49/​1/​012

[51] B. Wu, Z. Y. Wang, B. Cheng, Q. Y. Wang, A. P. Xu and Q. Lin, J. Phys. B: At. Mol. Opt. Phys. 47, 015001 (2014).
https:/​/​doi.org/​10.1088/​0953-4075/​47/​1/​015001

[52] E. B. Alexandrov, Phys. Scr., 2003, 27 (2003).
https:/​/​doi.org/​10.1238/​Physica.Topical.105a00027

[53] S. J. Seltzer, P. J. Meares, and M. V. Romalis, Phys. Rev. A 75, 051407(R) (2007).
https:/​/​doi.org/​10.1103/​PhysRevA.75.051407

[54] K. Jensen, V. M. Acosta, J. M. Higbie, M. P. Ledbetter, S. M. Rochester, and D. Budker, Phys. Rev. A 79, 023406 (2009).
https:/​/​doi.org/​10.1103/​PhysRevA.79.023406

[55] G. Tóth and I. Apellaniz, J. Phys. A: Math. Theor. 47, 424006 (2014).
https:/​/​doi.org/​10.1088/​1751-8113/​47/​42/​424006

[56] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kolodyński, Progress in Optics, edited by E. Wolf (Elsevier, Vol. 60, 2015).
https:/​/​doi.org/​10.1016/​bs.po.2015.02.003

[57] L. Pezzé and A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.102.100401

[58] P. Hyllus, L. Pezzé, and A. Smerzi, Phys. Rev. Lett. 105, 120501 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.105.120501

[59] J. Huang, S. Wu, H. Zhong, and C. Lee, Annu. Rev. Cold At. Mol. 2, 365 (2014).
https:/​/​doi.org/​10.1142/​9789814590174_0007

[60] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
https:/​/​doi.org/​10.1103/​PhysRevLett.72.3439

[61] V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).
https:/​/​doi.org/​10.1126/​science.1104149

[62] V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photon 5, 222 (2011).
https:/​/​doi.org/​10.1038/​nphoton.2011.35

[63] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L.Wall, A. M. Rey, M. Foss-Feig, and J. J. Bollinger, Science 352, 1297 (2016).
https:/​/​doi.org/​10.1126/​science.aad9958

[64] Z. Zhang, and L.-M. Duan, Phys. Rev. Lett. 111, 180401 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.111.180401

[65] Y. Zou, L. Wu, Q. Liu, X. Luo, S. Guo, J. Cao, M. Tey, and L. You, Proc Natl Acad Sci USA 201, 7151 (2018).
https:/​/​doi.org/​10.1073/​pnas.1715105115

[66] X. Luo, Y. Zou, L. Wu, Q. Liu, M. Han, M. Tey, and L. You, Science 355, 620 (2017).
https:/​/​doi.org/​10.1126/​science.aag1106

[67] S. Guo, F. Chen, Q. Liu, M. Xue, J. Chen, J. Cao, T. Mao, M. K. Tey, and L. You, Phys. Rev. Lett. 126, 060401 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.126.060401

[68] D. M. Stamper-Kurn and M. Ueda, Rev. Mod. Phys. 85, 1191 (2013).
https:/​/​doi.org/​10.1103/​RevModPhys.85.1191

[69] M. Gabbrielli, L. Pezzè, and A. Smerzi, Phys. Rev. Lett. 115, 163002 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.163002

[70] T. Ho, Phys. Rev. Lett. 81, 742 (1998).
https:/​/​doi.org/​10.1103/​PhysRevLett.81.742

[71] T. Ohmi and K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998).
https:/​/​doi.org/​10.1143/​JPSJ.67.1822

[72] E. Davis, G. Bentsen, and M. Schleier-Smith, Phys. Rev. Lett. 116, 053601 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.116.053601

[73] T. Macrì, A. Smerzi, and L. Pezzè, Phys. Rev. A 94, 010102 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.010102

[74] S. P. Nolan, S. S. Szigeti, and S. A. Haine, Phys. Rev. Lett. 119, 193601 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.193601

[75] L. Pezzé and A. Smerzi, Phys. Rev. Lett. 110, 163604 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.110.163604

[76] M. Zhuang, J. Huang, and C. Lee, Phys. Rev. Applied 16, 064056 (2021).
https:/​/​doi.org/​10.1103/​PhysRevApplied.16.064056

[77] H. Xing, A. Wang, Q. S. Tan, W. Zhang, and S. Yi, Phys. Rev. A 93, 043615 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.043615

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-11-30 02:43:35). On SAO/NASA ADS no data on citing works was found (last attempt 2022-11-30 02:43:36).