Spectral resolutions in effect algebras

Anna Jenčová and Sylvia Pulmannová

Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73 Bratislava, Slovakia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Effect algebras were introduced as an abstract algebraic model for Hilbert space effects representing quantum mechanical measurements. We study additional structures on an effect algebra $E$ that enable us to define spectrality and spectral resolutions for elements of $E$ akin to those of self-adjoint operators. These structures, called compression bases, are special families of maps on $E$, analogous to the set of compressions on operator algebras, order unit spaces or unital abelian groups. Elements of a compression base are in one-to-one correspondence with certain elements of $E$, called projections. An effect algebra is called spectral if it has a distinguished compression base with two special properties: the projection cover property (i.e., for every element $a$ in $E$ there is a smallest projection majorizing $a$), and the so-called b-comparability property, which is an analogue of general comparability in operator algebras or unital abelian groups. It is shown that in a spectral archimedean effect algebra $E$, every $a\in E$ admits a unique rational spectral resolution and its properties are studied. If in addition $E$ possesses a separating set of states, then every element $a\in E$ is determined by its spectral resolution. It is also proved that for some types of interval effect algebras (with RDP, archimedean divisible), spectrality of $E$ is equivalent to spectrality of its universal group and the corresponding rational spectral resolutions are the same. In particular, for convex archimedean effect algebras, spectral resolutions in $E$ are in agreement with spectral resolutions in the corresponding order unit space.

► BibTeX data

► References

[1] E.M. Alfsen, F.W. Shultz, ``Non-commutative spectral theory for affine function spaces on convex sets'', Mem. Amer. Math. Soc. 6 (1976) No. 172.

[2] E. M. Alfsen, F.W. Shultz, ``Geometry of State Spaces of Operator Algebras'', Birkhäuser, Boston-Basel-Berlin 2003.

[3] H. Barnum, J. Hilgert, ``Strongly symmetric spectral convex bodies are Jordan algebra state spaces'', (2019) arXiv:1904.03753.

[4] M. A. Berdikulov, ``Homogeneous order unit space of type $I_2$''. Acad. Nauk. UzSSR. Ser. Phys.-Math. Nauk 4 (1990), 8-14 (Russian).

[5] M.A. Berdikulov, S.T. Odilov, ``Generalized spin factor'', Uzb.Math. Journal 2(1994), 15–20.(Russian).

[6] C.C. Chang: ``Algebraic analysis of many-valued logic'', Trans. Amer. Math. Soc. 88 (1957) 467-490.

[7] G. Chiribella, G. M. D’Ariano, and P. Perinotti, ``Informational derivation of quantum theory'', Phys. Rev. A, 84 (2011), 012311, 2011.

[8] A. Dvurečenskij, S. Pulmannová, ``New Trends in Quantum Structures'', Kluwer, Academic, Dordrecht, 2000.

[9] D.J. Foulis, M.K. Bennett, ``Effect algebras and unsharp quantum logics'', Found. Phys. 24 (1994) 1331-1352.

[10] D.J. Foulis, M.K. Bennett,``Interval and scale effect algebras'', Advances in Mathematics 19 (1997) 200-215.

[11] D.J. Foulis, S. Pulmannová, ``Spectral resolutions in an order unit space'', Rep. Math. Phys, 62 (2008) 323-344.

[12] D.J. Foulis, ``Compressible groups'', Math. Slovaca 53 (5) (2003) 433-455.

[13] D.J. Foulis, ``Compressions on partially ordered abelian groups'', Proc. Amer. Math. Soc. 132 (2004) 3581-3587;.

[14] D.J. Foulis, R.J. Greechie, M.K. Bennett, ``Sums and products of interval algebras'', Int. J. Theor. Phys. 33 (1994) 2119-2136.

[15] D.J. Foulis, ``Compressible groups with general comparability'', Math. Slovaca 55 (4) (2005) 409-429.

[16] D.J. Foulis, ``Compression bases in unital groups'', Int. J. Theoret. Phys. 44 (12) (2005) 2153-2160.

[17] D.J. Foulis, S. Pulmannová, ``Monotone $\sigma$-complete RC-groups'', J. London Math. Soc. 73(2) (2006) 1325-1346.

[18] D.J. Foulis, ``Spectral resolution in a Rickart comgroup'', Rep. Math. Phys. 54 (2) (2004), 229-250.

[19] K.R. Goodearl, ``Partially ordered abelian groups with interpolation'' Math. Surveys and Monographs No. 20, AMS Providence, Rhode Island 1980.

[20] S.P. Gudder, S. Pulmannová, ``Representation theorem for convex effect algebra'', Comment. Math. Univ. Carolinae 39 (4) (1998) 645-659.

[21] S. Gudder, S. Pulmannová, E. Beltrametti, S. Bugajski, ``Convex and linear effect algebras'', Rep. Math. Phys. 44 (1999) 359-379.

[22] S. Gudder, ``Compressible effect algebras'', Rep. Math. Phys. 54 (2004) 93-114.

[23] S. Gudder, R. Greechie, ``Sequential product on effect algebras'', Rep. Math. Phys. 49 (2002), 87-111.

[24] S. Gudder, ``Compression bases in effect algebras'', Demonstratio Math. 39 (2006) 43-58.

[25] S. Gudder, ``Convex and sequential effect algebras'', arXiv:1802.01265vl[quant-ph] (2018).

[26] J. Harding, ``Regularity in quantum logic'', Int. J. Theor. Phys. 37 (1998), 1173–1212.

[27] L. Hardy, ``Quantum Theory From Five Reasonable Axioms'', (2001), arXiv:quant-ph/​0101012.

[28] B. Jacobs, B. Westerbaan, ``An effect-theoretic account of Lebesgue integration'', Electronic Notes in Theoretical Computer Science 319 (2015) 239-253.

[29] G. Jenča, S. Pulmannová, ``Orthocomplete effect algebras'', Proc. Am. Math. Soc. 131(9)(2003) 2663-2671.

[30] A. Jenčová, S. Pulmannová, ``Geometric and algebraic aspects of spectrality in order unit spaces: a comparison'', Journal of Mathematical Analysis and Applications 504 (2021), 125360.

[31] A. Jenčová, S. Pulmannová, ``Spectral resolutions in effect algebras'', (2021), arXiv:2111.02166v1.

[32] A. Jenčová and M. Plávala, ``On the properties of spectral effect algebras'', Quantum 3 (2019), 148.

[33] D. Mundici, ``Interpretation of AF C*-algebras in Łukasziewicz sentential calculus'', J. Funct. Anal. 65 (1986) 15-63.

[34] P. Pták, S. Pulmannová, ``Orthomodular Structures as Quantum Logics'', Kluwer, Dordrecht and VEDA, Bratislava (1991).

[35] S. Pulmannová, ``Divisible effect algebras and interval effect algebras'', Commentationes Mathematicae Universitatis Carolinae 42 (2001) 219-236.

[36] S. Pulmannová, ``Effect algebras with compressions'', Rep. Math. Phys. 58 (2006) 301-324.

[37] K. Ravindran, ``On a structure theory of effect algebras'', PhD thesis, Kansas State Univ., Manhattan, Kansas, (1996).

[38] A. Westerbaan, B. Westerbaan, and J. van de Wetering, ``A characterisation of ordered abstract probabilities'', Proceedings of the 35th Annual ACM/​IEEE Symposium on Logic in Computer Science, (2020).

[39] A. Westerbaan, B. Westerbaan, and J. van de Wetering, ``The three types of normal sequential effect algebras'', Quantum 4, 378 (2020).

[40] J. van de Wetering, ``An effect-theoretic reconstruction of quantum theory'', Compositionality 1 (2019), 1.

Cited by

[1] Anna Jenčová and Sylvia Pulmannová, "Spectral order unit spaces and JB-algebras", Journal of Mathematical Analysis and Applications 520 2, 126911 (2023).

[2] Anna Jenčová and Sylvia Pulmannová, "Spectral resolutions in effect algebras", Quantum 6, 849 (2022).

[3] Anna Jenčová and Sylvia Pulmannová, "Spectrality in Convex Sequential Effect Algebras", International Journal of Theoretical Physics 62 8, 193 (2023).

[4] Anna Jenčová and Sylvia Pulmannová, "Spectral order unit spaces and JB-algebras", arXiv:2208.08740, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-22 03:56:44) and SAO/NASA ADS (last updated successfully 2024-06-22 03:56:45). The list may be incomplete as not all publishers provide suitable and complete citation data.