Spectral resolutions in effect algebras
Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-814 73 Bratislava, Slovakia
Published: | 2022-11-03, volume 6, page 849 |
Eprint: | arXiv:2111.02166v3 |
Doi: | https://doi.org/10.22331/q-2022-11-03-849 |
Citation: | Quantum 6, 849 (2022). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Effect algebras were introduced as an abstract algebraic model for Hilbert space effects representing quantum mechanical measurements. We study additional structures on an effect algebra $E$ that enable us to define spectrality and spectral resolutions for elements of $E$ akin to those of self-adjoint operators. These structures, called compression bases, are special families of maps on $E$, analogous to the set of compressions on operator algebras, order unit spaces or unital abelian groups. Elements of a compression base are in one-to-one correspondence with certain elements of $E$, called projections. An effect algebra is called spectral if it has a distinguished compression base with two special properties: the projection cover property (i.e., for every element $a$ in $E$ there is a smallest projection majorizing $a$), and the so-called b-comparability property, which is an analogue of general comparability in operator algebras or unital abelian groups. It is shown that in a spectral archimedean effect algebra $E$, every $a\in E$ admits a unique rational spectral resolution and its properties are studied. If in addition $E$ possesses a separating set of states, then every element $a\in E$ is determined by its spectral resolution. It is also proved that for some types of interval effect algebras (with RDP, archimedean divisible), spectrality of $E$ is equivalent to spectrality of its universal group and the corresponding rational spectral resolutions are the same. In particular, for convex archimedean effect algebras, spectral resolutions in $E$ are in agreement with spectral resolutions in the corresponding order unit space.
► BibTeX data
► References
[1] E.M. Alfsen, F.W. Shultz, ``Non-commutative spectral theory for affine function spaces on convex sets'', Mem. Amer. Math. Soc. 6 (1976) No. 172.
[2] E. M. Alfsen, F.W. Shultz, ``Geometry of State Spaces of Operator Algebras'', Birkhäuser, Boston-Basel-Berlin 2003.
https://doi.org/10.1007/978-1-4612-0019-2
[3] H. Barnum, J. Hilgert, ``Strongly symmetric spectral convex bodies are Jordan algebra state spaces'', (2019) arXiv:1904.03753.
arXiv:1904.03753
[4] M. A. Berdikulov, ``Homogeneous order unit space of type $I_2$''. Acad. Nauk. UzSSR. Ser. Phys.-Math. Nauk 4 (1990), 8-14 (Russian).
[5] M.A. Berdikulov, S.T. Odilov, ``Generalized spin factor'', Uzb.Math. Journal 2(1994), 15–20.(Russian).
[6] C.C. Chang: ``Algebraic analysis of many-valued logic'', Trans. Amer. Math. Soc. 88 (1957) 467-490.
https://doi.org/10.2307/1993227
[7] G. Chiribella, G. M. D’Ariano, and P. Perinotti, ``Informational derivation of quantum theory'', Phys. Rev. A, 84 (2011), 012311, 2011.
https://doi.org/10.1103/PhysRevA.84.012311
[8] A. Dvurečenskij, S. Pulmannová, ``New Trends in Quantum Structures'', Kluwer, Academic, Dordrecht, 2000.
https://doi.org/10.1007/978-94-017-2422-7
[9] D.J. Foulis, M.K. Bennett, ``Effect algebras and unsharp quantum logics'', Found. Phys. 24 (1994) 1331-1352.
https://doi.org/10.1007/BF02283036
[10] D.J. Foulis, M.K. Bennett,``Interval and scale effect algebras'', Advances in Mathematics 19 (1997) 200-215.
https://doi.org/10.1006/aama.1997.0535
[11] D.J. Foulis, S. Pulmannová, ``Spectral resolutions in an order unit space'', Rep. Math. Phys, 62 (2008) 323-344.
https://doi.org/10.1016/S0034-4877(09)00004-4
[12] D.J. Foulis, ``Compressible groups'', Math. Slovaca 53 (5) (2003) 433-455.
[13] D.J. Foulis, ``Compressions on partially ordered abelian groups'', Proc. Amer. Math. Soc. 132 (2004) 3581-3587;.
https://doi.org/10.1090/S0002-9939-04-07644-0
[14] D.J. Foulis, R.J. Greechie, M.K. Bennett, ``Sums and products of interval algebras'', Int. J. Theor. Phys. 33 (1994) 2119-2136.
https://doi.org/10.1007/BF00675796
[15] D.J. Foulis, ``Compressible groups with general comparability'', Math. Slovaca 55 (4) (2005) 409-429.
[16] D.J. Foulis, ``Compression bases in unital groups'', Int. J. Theoret. Phys. 44 (12) (2005) 2153-2160.
https://doi.org/10.1007/s10773-005-8014-2
[17] D.J. Foulis, S. Pulmannová, ``Monotone $\sigma$-complete RC-groups'', J. London Math. Soc. 73(2) (2006) 1325-1346.
https://doi.org/10.1112/S002461070602271X
[18] D.J. Foulis, ``Spectral resolution in a Rickart comgroup'', Rep. Math. Phys. 54 (2) (2004), 229-250.
https://doi.org/10.1016/S0034-4877(04)80016-8
[19] K.R. Goodearl, ``Partially ordered abelian groups with interpolation'' Math. Surveys and Monographs No. 20, AMS Providence, Rhode Island 1980.
[20] S.P. Gudder, S. Pulmannová, ``Representation theorem for convex effect algebra'', Comment. Math. Univ. Carolinae 39 (4) (1998) 645-659.
[21] S. Gudder, S. Pulmannová, E. Beltrametti, S. Bugajski, ``Convex and linear effect algebras'', Rep. Math. Phys. 44 (1999) 359-379.
https://doi.org/10.1016/S0034-4877(00)87245-6
[22] S. Gudder, ``Compressible effect algebras'', Rep. Math. Phys. 54 (2004) 93-114.
https://doi.org/10.1016/S0034-4877(04)80008-9
[23] S. Gudder, R. Greechie, ``Sequential product on effect algebras'', Rep. Math. Phys. 49 (2002), 87-111.
https://doi.org/10.1016/S0034-4877(02)80007-6
[24] S. Gudder, ``Compression bases in effect algebras'', Demonstratio Math. 39 (2006) 43-58.
https://doi.org/10.1515/dema-2006-0106
[25] S. Gudder, ``Convex and sequential effect algebras'', arXiv:1802.01265vl[quant-ph] (2018).
arXiv:1802.01265
[26] J. Harding, ``Regularity in quantum logic'', Int. J. Theor. Phys. 37 (1998), 1173–1212.
https://doi.org/10.1023/A:1026665818335
[27] L. Hardy, ``Quantum Theory From Five Reasonable Axioms'', (2001), arXiv:quant-ph/0101012.
arXiv:quant-ph/0101012
[28] B. Jacobs, B. Westerbaan, ``An effect-theoretic account of Lebesgue integration'', Electronic Notes in Theoretical Computer Science 319 (2015) 239-253.
https://doi.org/10.1016/j.entcs.2015.12.015
[29] G. Jenča, S. Pulmannová, ``Orthocomplete effect algebras'', Proc. Am. Math. Soc. 131(9)(2003) 2663-2671.
https://doi.org/10.1090/S0002-9939-03-06990-9
[30] A. Jenčová, S. Pulmannová, ``Geometric and algebraic aspects of spectrality in order unit spaces: a comparison'', Journal of Mathematical Analysis and Applications 504 (2021), 125360.
https://doi.org/10.1016/j.jmaa.2021.125360
[31] A. Jenčová, S. Pulmannová, ``Spectral resolutions in effect algebras'', (2021), arXiv:2111.02166v1.
arXiv:2111.02166
[32] A. Jenčová and M. Plávala, ``On the properties of spectral effect algebras'', Quantum 3 (2019), 148.
https://doi.org/10.22331/q-2019-06-03-148
[33] D. Mundici, ``Interpretation of AF C*-algebras in Łukasziewicz sentential calculus'', J. Funct. Anal. 65 (1986) 15-63.
https://doi.org/10.1016/0022-1236(86)90015-7
[34] P. Pták, S. Pulmannová, ``Orthomodular Structures as Quantum Logics'', Kluwer, Dordrecht and VEDA, Bratislava (1991).
[35] S. Pulmannová, ``Divisible effect algebras and interval effect algebras'', Commentationes Mathematicae Universitatis Carolinae 42 (2001) 219-236.
[36] S. Pulmannová, ``Effect algebras with compressions'', Rep. Math. Phys. 58 (2006) 301-324.
https://doi.org/10.1016/S0034-4877(06)80054-6
[37] K. Ravindran, ``On a structure theory of effect algebras'', PhD thesis, Kansas State Univ., Manhattan, Kansas, (1996).
[38] A. Westerbaan, B. Westerbaan, and J. van de Wetering, ``A characterisation of ordered abstract probabilities'', Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, (2020).
https://doi.org/10.1145/3373718.3394742
[39] A. Westerbaan, B. Westerbaan, and J. van de Wetering, ``The three types of normal sequential effect algebras'', Quantum 4, 378 (2020).
https://doi.org/10.22331/q-2020-12-24-378
[40] J. van de Wetering, ``An effect-theoretic reconstruction of quantum theory'', Compositionality 1 (2019), 1.
https://doi.org/10.32408/compositionality-1-1
Cited by
[1] Anna Jenčová and Sylvia Pulmannová, "Spectral order unit spaces and JB-algebras", Journal of Mathematical Analysis and Applications 520 2, 126911 (2023).
[2] Anna Jenčová and Sylvia Pulmannová, "Spectral resolutions in effect algebras", Quantum 6, 849 (2022).
[3] Anna Jenčová and Sylvia Pulmannová, "Spectrality in Convex Sequential Effect Algebras", International Journal of Theoretical Physics 62 8, 193 (2023).
[4] Anna Jenčová and Sylvia Pulmannová, "Spectral order unit spaces and JB-algebras", arXiv:2208.08740, (2022).
The above citations are from Crossref's cited-by service (last updated successfully 2023-09-27 20:10:46) and SAO/NASA ADS (last updated successfully 2023-09-27 20:10:47). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.