Variational solutions to fermion-to-qubit mappings in two spatial dimensions

Jannes Nys and Giuseppe Carleo

École Polytechnique Fédérale de Lausanne (EPFL), Institute of Physics, CH-1015 Lausanne, Switzerland
Center for Quantum Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Through the introduction of auxiliary fermions, or an enlarged spin space, one can map local fermion Hamiltonians onto local spin Hamiltonians, at the expense of introducing a set of additional constraints. We present a variational Monte-Carlo framework to study fermionic systems through higher-dimensional ($\gt$1D) Jordan-Wigner transformations. We provide exact solutions to the parity and Gauss-law constraints that are encountered in bosonization procedures. We study the $t$-$V$ model in 2D and demonstrate how both the ground state and the low-energy excitation spectra can be retrieved in combination with neural network quantum state ansatze.

One can map local fermion Hamiltonians onto local spin Hamiltonians, at the expense of introducing a set of additional (gauge) constraints. We present a variational Monte-Carlo framework to study fermionic systems through higher-dimensional (>1D) Jordan-Wigner transformations.

► BibTeX data

► References

[1] Alexei Kitaev. ``Anyons in an exactly solved model and beyond''. Annals of Physics 321, 2–111 (2006).

[2] John Preskill. ``Quantum computing in the NISQ era and beyond''. Quantum 2, 79 (2018).

[3] Pascual Jordan and Eugene Paul Wigner. ``Über das paulische äquivalenzverbot''. In The Collected Works of Eugene Paul Wigner. Pages 109–129. Springer (1993).

[4] James D Whitfield, Vojtěch Havlíček, and Matthias Troyer. ``Local spin operators for fermion simulations''. Physical Review A 94, 030301 (2016).

[5] Jacek Wosiek. ``A local representation for fermions on a lattice''. Technical report. Univ., Physics Department (1981). url:​literature/​169185.

[6] Arkadiusz Bochniak, Błażej Ruba, Jacek Wosiek, and Adam Wyrzykowski. ``Constraints of kinematic bosonization in two and higher dimensions''. Physical Review D 102, 114502 (2020).

[7] Sergey B Bravyi and Alexei Yu Kitaev. ``Fermionic quantum computation''. Annals of Physics 298, 210–226 (2002).

[8] Frank Verstraete and J Ignacio Cirac. ``Mapping local hamiltonians of fermions to local hamiltonians of spins''. Journal of Statistical Mechanics: Theory and Experiment 2005, P09012 (2005).

[9] RC Ball. ``Fermions without fermion fields''. Physical review letters 95, 176407 (2005).

[10] Hoi Chun Po. ``Symmetric Jordan-Wigner transformation in higher dimensions'' (2021).

[11] Kanav Setia and James D Whitfield. ``Bravyi-kitaev superfast simulation of electronic structure on a quantum computer''. The Journal of chemical physics 148, 164104 (2018).

[12] Kanav Setia, Sergey Bravyi, Antonio Mezzacapo, and James D Whitfield. ``Superfast encodings for fermionic quantum simulation''. Physical Review Research 1, 033033 (2019).

[13] Yu-An Chen, Anton Kapustin, and Đorđe Radičević. ``Exact bosonization in two spatial dimensions and a new class of lattice gauge theories''. Annals of Physics 393, 234–253 (2018).

[14] Yu-An Chen and Yijia Xu. ``Equivalence between fermion-to-qubit mappings in two spatial dimensions'' (2022).

[15] Yu-An Chen and Anton Kapustin. ``Bosonization in three spatial dimensions and a 2-form gauge theory''. Physical Review B 100, 245127 (2019).

[16] Yu-An Chen. ``Exact bosonization in arbitrary dimensions''. Physical Review Research 2, 033527 (2020).

[17] Kangle Li and Hoi Chun Po. ``Higher-dimensional jordan-wigner transformation and auxiliary majorana fermions''. Phys. Rev. B 106, 115109 (2022).

[18] Arkadiusz Bochniak and Błażej Ruba. ``Bosonization based on Clifford algebras and its gauge theoretic interpretation''. Journal of High Energy Physics 2020, 1–36 (2020).

[19] Nathanan Tantivasadakarn. ``Jordan-Wigner dualities for translation-invariant Hamiltonians in any dimension: Emergent fermions in fracton topological order''. Physical Review Research 2, 023353 (2020).

[20] Giuseppe Carleo and Matthias Troyer. ``Solving the quantum many-body problem with artificial neural networks''. Science 355, 602–606 (2017).

[21] Kenny Choo, Giuseppe Carleo, Nicolas Regnault, and Titus Neupert. ``Symmetries and many-body excitations with neural-network quantum states''. Physical Review Letters 121, 167204 (2018).

[22] Xiao-Gang Wen. ``Quantum orders in an exact soluble model''. Physical review letters 90, 016803 (2003).

[23] Filippo Vicentini, Damian Hofmann, Attila Szabó, Dian Wu, Christopher Roth, Clemens Giuliani, Gabriel Pescia, Jannes Nys, Vladimir Vargas-Calderón, Nikita Astrakhantsev, and Giuseppe Carleo. ``NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems''. SciPost Phys. CodebasesPage 7 (2022).

[24] Sirui Lu, Xun Gao, and L-M Duan. ``Efficient representation of topologically ordered states with restricted boltzmann machines''. Physical Review B 99, 155136 (2019).

[25] Koji Inui, Yasuyuki Kato, and Yukitoshi Motome. ``Determinant-free fermionic wave function using feed-forward neural networks''. Phys. Rev. Research 3, 043126 (2021).

[26] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. ``JAX: composable transformations of Python+NumPy programs'' (2018).

[27] Dion Häfner and Filippo Vicentini. ``mpi4jax: Zero-copy mpi communication of jax arrays''. Journal of Open Source Software 6, 3419 (2021).

[28] James Stokes, Javier Robledo Moreno, Eftychios A Pnevmatikakis, and Giuseppe Carleo. ``Phases of two-dimensional spinless lattice fermions with first-quantized deep neural-network quantum states''. Physical Review B 102, 205122 (2020).

Cited by

[1] Jannes Nys, Zakari Denis, and Giuseppe Carleo, "Real-time quantum dynamics of thermal states with neural thermofields", Physical Review B 109 23, 235120 (2024).

[2] Alessandro Sinibaldi, Clemens Giuliani, Giuseppe Carleo, and Filippo Vicentini, "Unbiasing time-dependent Variational Monte Carlo by projected quantum evolution", Quantum 7, 1131 (2023).

[3] Yu-An Chen, Alexey V. Gorshkov, and Yijia Xu, "Error-correcting codes for fermionic quantum simulation", SciPost Physics 16 1, 033 (2024).

[4] Manuel G. Algaba, P. V. Sriluckshmy, Martin Leib, and Fedor Šimkovic IV, "Low-depth simulations of fermionic systems on square-grid quantum hardware", Quantum 8, 1327 (2024).

[5] Anna Dawid, Julian Arnold, Borja Requena, Alexander Gresch, Marcin Płodzień, Kaelan Donatella, Kim A. Nicoli, Paolo Stornati, Rouven Koch, Miriam Büttner, Robert Okuła, Gorka Muñoz-Gil, Rodrigo A. Vargas-Hernández, Alba Cervera-Lierta, Juan Carrasquilla, Vedran Dunjko, Marylou Gabrié, Patrick Huembeli, Evert van Nieuwenburg, Filippo Vicentini, Lei Wang, Sebastian J. Wetzel, Giuseppe Carleo, Eliška Greplová, Roman Krems, Florian Marquardt, Michał Tomza, Maciej Lewenstein, and Alexandre Dauphin, "Modern applications of machine learning in quantum sciences", arXiv:2204.04198, (2022).

[6] Filippo Vicentini, Damian Hofmann, Attila Szabó, Dian Wu, Christopher Roth, Clemens Giuliani, Gabriel Pescia, Jannes Nys, Vladimir Vargas-Calderon, Nikita Astrakhantsev, and Giuseppe Carleo, "NetKet 3: Machine Learning Toolbox for Many-Body Quantum Systems", arXiv:2112.10526, (2021).

[7] Adam Wyrzykowski, "Local spin description of fermions on a lattice", arXiv:2206.10393, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-22 13:42:13) and SAO/NASA ADS (last updated successfully 2024-06-22 13:42:13). The list may be incomplete as not all publishers provide suitable and complete citation data.