Experimental entanglement generation for quantum key distribution beyond 1 Gbit/s

Sebastian Philipp Neumann, Mirela Selimovic, Martin Bohmann, and Rupert Ursin

Institute for Quantum Optics and Quantum Information, Boltzmanngasse 3, 1090 Vienna, Austria
Vienna Center for Quantum Science and Technology, Boltzmanngasse 5, 1090 Vienna, Austria

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Top-performance sources of photonic entanglement are an indispensable resource for many applications in quantum communication, most notably quantum key distribution. However, up to now, no source has been shown to simultaneously exhibit the high pair-creation rate, broad bandwidth, excellent state fidelity, and low intrinsic loss necessary for gigabit secure key rates. In this work, we present for the first time a source of polarization-entangled photon pairs at telecommunication wavelengths that covers all these needs of real-world quantum-cryptographic applications, thus enabling unprecedented quantum-secure key rates of more than 1 Gbit/s. Our source is designed to optimally exploit state-of-the-art telecommunication equipment and detection systems. Any technological improvement of the latter would result in an even higher rate without modification of the source. We discuss the used wavelength-multiplexing approach, including its potential for multi-user quantum networks and its fundamental limitations. Our source paves the way for high-speed quantum encryption approaching present-day internet bandwidth.

► BibTeX data

► References

[1] S. Atzeni, A. S. Rab, G. Corrielli, E. Polino, M. Valeri, P. Mataloni, N. Spagnolo, A. Crespi, F. Sciarrino, and R. Osellame, Optica 5, 311 (2018).

[2] C.-W. Sun, S.-H. Wu, J.-C. Duan, J.-W. Zhou, J.-L. Xia, P. Xu, Z. Xie, Y.-X. Gong, and S.-N. Zhu, Opt. Lett. 44, 5598 (2019).

[3] W.-Z. Liu, M.-H. Li, S. Ragy, S.-R. Zhao, B. Bai, Y. Liu, P. J. Brown, J. Zhang, R. Colbeck, J. Fan, Q. Zhang, and J.-W. Pan, Nature Physics 17, 448 (2021).

[4] F. Kaiser, L. Ngah, A. Issautier, T. Delord, D. Aktas, V. D’Auria, M. De Micheli, A. Kastberg, L. Labonte, O. Alibart, A. Martin, and S. Tanzilli, Optics Communications 327, 7 (2014).

[5] S. K. Joshi, Phd Thesis at Centre for Quantum Technologies, National University of Singapore (2014).

[6] Z. Tang, R. Chandrasekara, Y. C. Tan, C. Cheng, K. Durak, and A. Ling, Scientific Reports 6, 25603 (2016).

[7] A. Anwar, C. Perumangatt, F. Steinlechner, T. Jennewein, and A. Ling, Review of Scientific Instruments 92, 041101 (2021).

[8] S. P. Neumann, T. Scheidl, M. Selimovic, M. Pivoluska, B. Liu, M. Bohmann, and R. Ursin, Phys. Rev. A 104, 022406 (2021).

[9] D. Aktas, B. Fedrici, F. Kaiser, T. Lunghi, L. Labonte, and S. Tanzilli, Laser & Photonics Reviews 10, 451 (2016).

[10] J. Pseiner, L. Achatz, L. Bulla, M. Bohmann, and R. Ursin, Quantum Science and Technology 6, 035013 (2021).

[11] S. P. Neumann, D. Ribezzo, M. Bohmann, and R. Ursin, Quantum Science and Technology 6, 025017 (2021).

[12] K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, Journal of Modern Optics 63, 2005 (2016).

[13] Z. Yuan, A. Plews, R. Takahashi, K. Doi, W. Tam, A. W. Sharpe, A. R. Dixon, E. Lavelle, J. F. Dynes, A. Murakami, M. Kujiraoka, M. Lucamarini, Y. Tanizawa, H. Sato, and A. J. Shields, Journal of Lightwave Technology 36, 3427 (2018).

[14] N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier, Science Advances 3, 11 (2017).

[15] T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, New Journal of Physics 17, 022002 (2015).

[16] L. Bulla, M. Pivoluska, K. Hjorth, O. Kohout, J. Lang, S. Ecker, S. P. Neumann, J. Bittermann, R. Kindler, M. Huber, M. Bohmann, and R. Ursin, arXiv 2204.07536 (2022).

[17] S. Wengerowsky, S. K. Joshi, F. Steinlechner, H. Hübel, and R. Ursin, Nature 564, 225-228 (2018).

[18] D. N. Klyshko, Soviet Journal of Quantum Electronics 10, 1112 (1980).

[19] R. S. Bennink, Physical Review A 81, 053805 (2010).

[20] P. W. Shor and J. Preskill, Phys. Rev. Lett. 85, 441 (2000).

[21] HC Photonics, `GRIIRA and Laser damage''.

[22] S. P. Neumann, A. Buchner, L. Bulla, M. Bohmann, and R. Ursin, arXiv 2203.12417 (2022).

[23] International Telecommunication Union, Recommendation ITU-T G.694.1 (2020).

[24] S. K. Joshi, D. Aktas, S. Wengerowsky, M. Lončarić, S. P. Neumann, B. Liu, T. Scheidl, G. C. Lorenzo, Ž. Samec Kling, A. Qiu, M. Razavi, M. Stipčević, J. G. Rarity, and R. Ursin, Science Advances 6, 36 (2020).

[25] M. Perrenoud, M. Caloz, E. Amri, C. Autebert, C. Schoenenberger, H. Zbinden, and F. Bussieres, Supercond. Sci. Technol. 34, 024002 (2021).

[26] T. M. Rambo, A. R. Conover, and A. J. Miller, arXiv 2103.14086 (2021).

[27] B. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. Colangelo, G. M. Crouch, A. E. Dane, T. Gerrits, A. E. Lita, F. Marsili, G. Moody, C. Peña, E. Ramirez, J. D. Rezac, N. Sinclair, M. J. Stevens, A. E. Velasco, V. B. Verma, E. E. Wollman, S. Xie, D. Zhu, P. D. Hale, M. Spiropulu, K. L. Silverman, R. P. Mirin, S. W. Nam, A. G. Kozorezov, M. D. Shaw, and K. K. Berggren, Nature Photonics 14, 250 (2020).

[28] M. Fejer, G. Magel, D. Jundt, and R. Byer, IEEE Journal of Quantum Electronics 28, 2631 (1992).

[29] H.-K. Lo, H. F. Chau, and M. Ardehali, Journal of Cryptology 18, 133 (2005).

[30] D. G. England, P. J. Bustard, J. Nunn, R. Lausten, and B. J. Sussman, Phys. Rev. Lett. 111, 243601 (2013).

Cited by

[1] Sebastian Philipp Neumann, Alexander Buchner, Lukas Bulla, Martin Bohmann, and Rupert Ursin, "Continuous entanglement distribution over a transnational 248 km fiber link", arXiv:2203.12417, Nature Communications 13 1, 6134 (2022).

[2] Xiongfeng Ma, "High-performance Photonic Entanglement Generation", Quantum Views 6, 69 (2022).

[3] Meritxell Cabrejo-Ponce, Christopher Spiess, André Luiz Marques Muniz, Philippe Ancsin, and Fabian Steinlechner, "GHz-pulsed source of entangled photons for reconfigurable quantum networks", Quantum Science and Technology 7 4, 045022 (2022).

[4] Christopher L. Morrison, Francesco Graffitti, Peter Barrow, Alexander Pickston, Joseph Ho, and Alessandro Fedrizzi, "Frequency-bin entanglement from domain-engineered down-conversion", APL Photonics 7 6, 066102 (2022).

[5] Yoann Pelet, Grégory Sauder, Mathis Cohen, Laurent Labonté, Olivier Alibart, Anthony Martin, and Sébastien Tanzilli, "Operational entanglement-based quantum key distribution over 50 km of real-field optical fibres", arXiv:2207.14707.

[6] Emma Brambila, Rodrigo Gómez, Riza Fazili, Markus Gräfe, and Fabian Steinlechner, "Ultrabright Polarization-Entangled Photon Pair Source for Frequency-Multiplexed Quantum Communication in Free-Space", arXiv:2205.10214.

The above citations are from Crossref's cited-by service (last updated successfully 2022-11-30 03:58:27) and SAO/NASA ADS (last updated successfully 2022-11-30 03:58:28). The list may be incomplete as not all publishers provide suitable and complete citation data.

1 thought on “Experimental entanglement generation for quantum key distribution beyond 1 Gbit/s

  1. Pingback: Perspective in Quantum Views by Xiongfeng Ma "High-performance Photonic Entanglement Generation"