Quantum information with top quarks in QCD

Yoav Afik1 and Juan Ramón Muñoz de Nova2

1Experimental Physics Department, CERN, 1211 Geneva, Switzerland
2Departamento de Física de Materiales, Universidad Complutense de Madrid, E-28040 Madrid, Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Top quarks represent unique high-energy systems since their spin correlations can be measured, thus allowing to study fundamental aspects of quantum mechanics with qubits at high-energy colliders. We present here the general framework of the quantum state of a top-antitop ($t\bar{t}$) quark pair produced through quantum chromodynamics (QCD) in a high-energy collider. We argue that, in general, the total quantum state that can be probed in a collider is given in terms of the production spin density matrix, which necessarily gives rise to a mixed state. We compute the quantum state of a $t\bar{t}$ pair produced from the most elementary QCD processes, finding the presence of entanglement and CHSH violation in different regions of phase space. We show that any realistic hadronic production of a $t\bar{t}$ pair is a statistical mixture of these elementary QCD processes. We focus on the experimentally relevant cases of proton-proton and proton-antiproton collisions, performed at the LHC and the Tevatron, analyzing the dependence of the quantum state with the energy of the collisions. We provide experimental observables for entanglement and CHSH-violation signatures. At the LHC, these signatures are given by the measurement of a single observable, which in the case of entanglement represents the violation of a Cauchy-Schwarz inequality. We extend the validity of the quantum tomography protocol for the $t\bar{t}$ pair proposed in the literature to more general quantum states, and for any production mechanism. Finally, we argue that a CHSH violation measured in a collider is only a weak form of violation of Bell's theorem, necessarily containing a number of loopholes.

The top quark is the most massive fundamental particle known to exist. This large mass is translated into a lifetime so short that it decays before hadronising, allowing to reconstruct its spin quantum state from its decay products. As a result, spin correlations between top-antitop quarks ($t\bar{t}$) have been intensively studied. However, no link with quantum information theory has been established until very recently.

Here we present the general formalism of the quantum state of a $t\bar{t}$ pair, a unique high-energy realization of a two-qubit state. Remarkably, once the probabilities and density matrices of each $t\bar{t}$ production process are computed by the high-energy theory, we are simply left with a typical problem in quantum information involving the statistical mixture of two-qubit quantum states. This important observation motivates the pedagogical presentation of the article, fully developed within a genuine quantum information approach, aimed at making it easily understandable by the general physics community.

We discuss the experimental study of quantum information concepts such as entanglement, CHSH inequality or quantum tomography with top quarks. Interestingly, both entanglement and CHSH violation can be detected at the Large Hadron Collider (LHC) from the measurement of one single observable, with high-statistical significance in the case of entanglement.

The implementation of these measurements at the LHC paves the way to study quantum information also at high-energy colliders. Due to their genuinely relativistic behavior, the exotic character of the symmetries and interactions involved, as well as their fundamental nature, high-energy colliders are extremely attractive systems for this type of studies. For instance, the proposed detection of entanglement will represent the first detection ever of entanglement between a pair of quarks, and the highest-energy observation of entanglement so far achieved.

► BibTeX data

► References

[1] Albert Einstein, Boris Podolsky, and Nathan Rosen. ``Can quantum mechanical description of physical reality be considered complete?''. Phys. Rev. 47, 777–780 (1935).

[2] E. Schrodinger. ``Discussion of probability relations between separated systems''. Pro. Cambridge Phi. Soc. 31, 555 (1935).

[3] J. S. Bell. ``On the Einstein-Podolsky-Rosen paradox''. Physics Physique Fizika 1, 195–200 (1964).

[4] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. ``Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels''. Phys. Rev. Lett. 70, 1895–1899 (1993).

[5] Dik Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter, and Anton Zeilinger. ``Experimental quantum teleportation''. Nature 390, 575–579 (1997).

[6] Daniel Gottesman and Isaac L. Chuang. ``Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations''. Nature 402, 390–393 (1999).

[7] Charles H Bennett and David P DiVincenzo. ``Quantum information and computation''. Nature 404, 247 (2000).

[8] Robert Raussendorf and Hans J. Briegel. ``A one-way quantum computer''. Phys. Rev. Lett. 86, 5188–5191 (2001).

[9] Nicolas Gisin, Grégoire Ribordy, Wolfgang Tittel, and Hugo Zbinden. ``Quantum cryptography''. Rev. Mod. Phys. 74, 145–195 (2002).

[10] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. ``Quantum-enhanced measurements: Beating the standard quantum limit''. Science 306, 1330–1336 (2004).

[11] Robert M. Gingrich and Christoph Adami. ``Quantum entanglement of moving bodies''. Phys. Rev. Lett. 89, 270402 (2002).

[12] Asher Peres and Daniel R. Terno. ``Quantum information and relativity theory''. Rev. Mod. Phys. 76, 93–123 (2004).

[13] Nicolai Friis, Reinhold A. Bertlmann, Marcus Huber, and Beatrix C. Hiesmayr. ``Relativistic entanglement of two massive particles''. Phys. Rev. A 81, 042114 (2010).

[14] N. Friis, A. R. Lee, K. Truong, C. Sabín, E. Solano, G. Johansson, and I. Fuentes. ``Relativistic quantum teleportation with superconducting circuits''. Phys. Rev. Lett. 110, 113602 (2013).

[15] Flaminia Giacomini, Esteban Castro-Ruiz, and Časlav Brukner. ``Relativistic quantum reference frames: The operational meaning of spin''. Phys. Rev. Lett. 123, 090404 (2019).

[16] Podist Kurashvili and Levan Chotorlishvili. ``Quantum discord and entropic measures of two relativistic fermions'' (2022). arXiv:2207.12963.

[17] Albert Bramon and Gianni Garbarino. ``Novel Bell's inequalities for entangled ${\mathit{K}}^{0}{\overline{\mathit{K}}}^{0}$ pairs''. Phys. Rev. Lett. 88, 040403 (2002).

[18] Yu Shi. ``Entanglement in relativistic quantum field theory''. Phys. Rev. D 70, 105001 (2004).

[19] Boris Kayser, Joachim Kopp, R. G. Hamish Robertson, and Petr Vogel. ``Theory of neutrino oscillations with entanglement''. Phys. Rev. D 82, 093003 (2010).

[20] Alba Cervera-Lierta, José I. Latorre, Juan Rojo, and Luca Rottoli. ``Maximal entanglement in High Energy Physics''. SciPost Phys. 3, 036 (2017).

[21] Zhoudunming Tu, Dmitri E. Kharzeev, and Thomas Ullrich. ``Einstein-Podolsky-Rosen paradox and quantum entanglement at subnucleonic scales''. Phys. Rev. Lett. 124, 062001 (2020).

[22] X. Feal, C. Pajares, and R. A. Vazquez. ``Thermal and hard scales in transverse momentum distributions, fluctuations, and entanglement''. Phys. Rev. C 104, 044904 (2021).

[23] S. Abachi et al. ``Observation of the top quark''. Phys. Rev. Lett. 74, 2632–2637 (1995). arXiv:hep-ex/​9503003.

[24] F. Abe et al. ``Observation of top quark production in $\bar{p}p$ collisions''. Phys. Rev. Lett. 74, 2626–2631 (1995). arXiv:hep-ex/​9503002.

[25] G. L. Kane, G. A. Ladinsky, and C. P. Yuan. ``Using the top quark for testing standard-model polarization and $\mathrm{CP}$ predictions''. Phys. Rev. D 45, 124–141 (1992).

[26] Werner Bernreuther and Arnd Brandenburg. ``Tracing $\mathrm{CP}$ violation in the production of top quark pairs by multiple tev proton-proton collisions''. Phys. Rev. D 49, 4481–4492 (1994).

[27] Stephen J. Parke and Yael Shadmi. ``Spin correlations in top quark pair production at $e^{+} e^{-}$ colliders''. Phys. Lett. B 387, 199–206 (1996). arXiv:hep-ph/​9606419.

[28] W. Bernreuther, M. Flesch, and P. Haberl. ``Signatures of Higgs bosons in the top quark decay channel at hadron colliders''. Phys. Rev. D 58, 114031 (1998).

[29] W. Bernreuther, A. Brandenburg, Z.G. Si, and P. Uwer. ``Top quark pair production and decay at hadron colliders''. Nuclear Physics B 690, 81 – 137 (2004).

[30] Peter Uwer. ``Maximizing the spin correlation of top quark pairs produced at the large hadron collider''. Physics Letters B 609, 271 – 276 (2005).

[31] Matthew Baumgart and Brock Tweedie. ``A new twist on top quark spin correlations''. Journal of High Energy Physics 2013, 117 (2013).

[32] Werner Bernreuther, Dennis Heisler, and Zong-Guo Si. ``A set of top quark spin correlation and polarization observables for the LHC: Standard Model predictions and new physics contributions''. Journal of High Energy Physics 2015, 1–36 (2015).

[33] T. Aaltonen et al. ``Measurement of $t\bar{t}$ Spin Correlation in $p\bar{p}$ Collisions Using the CDF II Detector at the Tevatron''. Phys. Rev. D83, 031104 (2011). arXiv:1012.3093.

[34] Victor Mukhamedovich Abazov et al. ``Measurement of spin correlation in $t\bar{t}$ production using a matrix element approach''. Phys. Rev. Lett. 107, 032001 (2011). arXiv:1104.5194.

[35] Victor Mukhamedovich Abazov et al. ``Measurement of Spin Correlation between Top and Antitop Quarks Produced in $p\bar{p}$ Collisions at $\sqrt{s} =$ 1.96 TeV''. Phys. Lett. B757, 199–206 (2016). arXiv:1512.08818.

[36] Georges Aad et al. ``Observation of spin correlation in $t \bar{t}$ events from pp collisions at sqrt(s) = 7 TeV using the ATLAS detector''. Phys. Rev. Lett. 108, 212001 (2012). arXiv:1203.4081.

[37] Serguei Chatrchyan et al. ``Measurements of $t\bar{t}$ spin correlations and top-quark polarization using dilepton final states in $pp$ collisions at $\sqrt{s}$ = 7 TeV''. Phys. Rev. Lett. 112, 182001 (2014). arXiv:1311.3924.

[38] Georges Aad et al. ``Measurement of Spin Correlation in Top-Antitop Quark Events and Search for Top Squark Pair Production in $pp$ Collisions at $\sqrt{s}=8$ TeV Using the ATLAS Detector''. Phys. Rev. Lett. 114, 142001 (2015). arXiv:1412.4742.

[39] Albert M Sirunyan et al. ``Measurement of the top quark polarization and $\mathrm{t\bar{t}}$ spin correlations using dilepton final states in proton-proton collisions at $\sqrt{s} =$ 13 TeV''. Phys. Rev. D100, 072002 (2019). arXiv:1907.03729.

[40] Morad Aaboud et al. ``Measurements of top-quark pair spin correlations in the $e\mu$ channel at $\sqrt{s} = 13$ TeV using $pp$ collisions in the ATLAS detector''. Eur. Phys. J. C 80, 754 (2020). arXiv:1903.07570.

[41] Yoav Afik and Juan Ramón Muñoz de Nova. ``Entanglement and quantum tomography with top quarks at the LHC''. The European Physical Journal Plus 136, 1–23 (2021). arXiv:2003.02280.

[42] Rafael Aoude, Eric Madge, Fabio Maltoni, and Luca Mantani. ``Quantum SMEFT tomography: Top quark pair production at the LHC''. Phys. Rev. D 106, 055007 (2022). arXiv:2203.05619.

[43] Marco Fabbrichesi, Roberto Floreanini, and Emidio Gabrielli. ``Constraining new physics in entangled two-qubit systems: top-quark, tau-lepton and photon pairs'' (2022). arXiv:2208.11723.

[44] M. Fabbrichesi, R. Floreanini, and G. Panizzo. ``Testing Bell inequalities at the LHC with top-quark pairs''. Phys. Rev. Lett. 127, 161801 (2021). arXiv:2102.11883.

[45] Claudio Severi, Cristian Degli Esposti Boschi, Fabio Maltoni, and Maximiliano Sioli. ``Quantum tops at the LHC: from entanglement to Bell inequalities''. The European Physical Journal C 82, 285 (2022). arXiv:2110.10112.

[46] J. A. Aguilar-Saavedra and J. A. Casas. ``Improved tests of entanglement and Bell inequalities with LHC tops''. The European Physical Journal C 82, 666 (2022). arXiv:2205.00542.

[47] Alan J. Barr. ``Testing Bell inequalities in Higgs boson decays''. Phys. Lett. B 825, 136866 (2022). arXiv:2106.01377.

[48] Andrew J. Larkoski. ``General analysis for observing quantum interference at colliders''. Phys. Rev. D 105, 096012 (2022).

[49] Werner Bernreuther and Zong-Guo Si. ``Distributions and correlations for top quark pair production and decay at the Tevatron and LHC''. Nucl. Phys. B 837, 90–121 (2010). arXiv:1003.3926.

[50] D.F. Walls and G.J. Milburn. ``Quantum optics''. Springer-Verlag. Berlin, Heidelberg, New York (2008).

[51] Asher Peres. ``Separability criterion for density matrices''. Phys. Rev. Lett. 77, 1413–1415 (1996).

[52] Pawel Horodecki. ``Separability criterion and inseparable mixed states with positive partial transposition''. Physics Letters A 232, 333 – 339 (1997).

[53] William K. Wootters. ``Entanglement of formation of an arbitrary state of two qubits''. Phys. Rev. Lett. 80, 2245–2248 (1998).

[54] Daniel F. V. James, Paul G. Kwiat, William J. Munro, and Andrew G. White. ``Measurement of qubits''. Phys. Rev. A 64, 052312 (2001).

[55] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. ``Proposed experiment to test local hidden-variable theories''. Phys. Rev. Lett. 23, 880–884 (1969).

[56] R. Horodecki, P. Horodecki, and M. Horodecki. ``Violating Bell inequality by mixed spin-12 states: necessary and sufficient condition''. Physics Letters A 200, 340–344 (1995).

[57] B. S. Cirel'son. ``Quantum generalizations of Bell's inequality''. Letters in Mathematical Physics 4, 93–100 (1980).

[58] J.R. Taylor. ``Scattering theory: The quantum theory of nonrelativistic collisions''. Dover. New York (2006).

[59] Dmitri E. Kharzeev and Eugene M. Levin. ``Deep inelastic scattering as a probe of entanglement''. Phys. Rev. D 95, 114008 (2017).

[60] John C. Martens, John P. Ralston, and J. D. Tapia Takaki. ``Quantum tomography for collider physics: Illustrations with lepton pair production''. Eur. Phys. J. C 78, 5 (2018). arXiv:1707.01638.

[61] Gregory Mahlon and Stephen Parke. ``Angular correlations in top quark pair production and decay at hadron colliders''. Phys. Rev. D 53, 4886–4896 (1996).

[62] R. P. Feynman. ``The behavior of hadron collisions at extreme energies''. Conf. Proc. C 690905, 237–258 (1969).

[63] J.D. Bjorken and Emmanuel A. Paschos. ``Inelastic Electron Proton and gamma Proton Scattering, and the Structure of the Nucleon''. Phys. Rev. 185, 1975–1982 (1969).

[64] Stephane Fartoukh et al. ``LHC Configuration and Operational Scenario for Run 3''. Technical report. CERNGeneva (2021). url: cds.cern.ch/​record/​2790409.

[65] A. Abada et al. ``HE-LHC: The High-Energy Large Hadron Collider: Future Circular Collider Conceptual Design Report Volume 4''. Eur. Phys. J. ST 228, 1109–1382 (2019).

[66] Michael Benedikt, Alain Blondel, Patrick Janot, Michelangelo Mangano, and Frank Zimmermann. ``Future Circular Colliders succeeding the LHC''. Nature Phys. 16, 402–407 (2020).

[67] Barbara M. Terhal. ``Bell inequalities and the separability criterion''. Physics Letters A 271, 319–326 (2000).

[68] Sabine Wölk, Marcus Huber, and Otfried Gühne. ``Unified approach to entanglement criteria using the Cauchy-Schwarz and Hölder inequalities''. Phys. Rev. A 90, 022315 (2014).

[69] J. R. M. de Nova, F. Sols, and I. Zapata. ``Violation of Cauchy-Schwarz inequalities by spontaneous Hawking radiation in resonant boson structures''. Phys. Rev. A 89, 043808 (2014).

[70] J. R. M. de Nova, F. Sols, and I. Zapata. ``Entanglement and violation of classical inequalities in the Hawking radiation of flowing atom condensates''. New J. Phys. 17, 105003 (2015). arXiv:1509.02224.

[71] John Schliemann. ``Entanglement in su(2)-invariant quantum spin systems''. Phys. Rev. A 68, 012309 (2003).

[72] I. Zurbano Fernandez et al. ``High-Luminosity Large Hadron Collider (HL-LHC): Technical design report''. Technical report. CERNGeneva (2020).

[73] A. Abada et al. ``FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3''. Eur. Phys. J. ST 228, 755–1107 (2019).

[74] B. Hensen et al. ``Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres''. Nature 526, 682–686 (2015). arXiv:1508.05949.

[75] Marissa Giustina, Marijn A. M. Versteegh, Sören Wengerowsky, Johannes Handsteiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Kofler, Jan-Åke Larsson, Carlos Abellán, Waldimar Amaya, Valerio Pruneri, Morgan W. Mitchell, Jörn Beyer, Thomas Gerrits, Adriana E. Lita, Lynden K. Shalm, Sae Woo Nam, Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, and Anton Zeilinger. ``Significant-loophole-free test of Bell's Theorem with entangled photons''. Phys. Rev. Lett. 115, 250401 (2015).

[76] The BIG Bell Test Collaboration. ``Challenging local realism with human choices''. Nature 557, 212–216 (2018).

[77] Georges Aad et al. ``Operation of the ATLAS trigger system in Run 2''. JINST 15, P10004 (2020). arXiv:2007.12539.

[78] Harold Ollivier and Wojciech H. Zurek. ``Quantum discord: A measure of the quantumness of correlations''. Phys. Rev. Lett. 88, 017901 (2001).

[79] Yoav Afik and Juan Ramón Muñoz de Nova. ``Quantum discord and steering in top quarks at the LHC'' (2022). arXiv:2209.03969.

[80] Alain Blondel et al. ``Polarization and Centre-of-mass Energy Calibration at FCC-ee'' (2019). arXiv:1909.12245.

[81] T. Barklow, J. Brau, K. Fujii, J. Gao, J. List, N. Walker, and K. Yokoya. ``ILC Operating Scenarios'' (2015). arXiv:1506.07830.

[82] M J Boland et al. ``Updated baseline for a staged Compact Linear Collider'' (2016). arXiv:1608.07537.

[83] T. K. Charles et al. ``The Compact Linear Collider (CLIC) - 2018 Summary Report'' (2018). arXiv:1812.06018.

[84] Alan J. Barr, Pawel Caban, and Jakub Rembieliński. ``Bell-type inequalities for systems of relativistic vector bosons'' (2022). arXiv:2204.11063.

[85] Olivier Giraud, Petr Braun, and Daniel Braun. ``Classicality of spin states''. Phys. Rev. A 78, 042112 (2008).

[86] Ryszard Horodecki and Michal/​ Horodecki. ``Information-theoretic aspects of inseparability of mixed states''. Phys. Rev. A 54, 1838–1843 (1996).

[87] Richard D. Ball et al. ``Parton distributions for the LHC Run II''. JHEP 04, 040 (2015). arXiv:1410.8849.

[88] Paul F. Byrd and Morris D. Friedman. ``Handbook of Elliptic Integrals for Engineers and Scientists''. Springer-Verlag. Berlin, Heidelberg, New York (1971).

Cited by

[1] J. A. Aguilar-Saavedra and J. A. Casas, "Improved tests of entanglement and Bell inequalities with LHC tops", European Physical Journal C 82 8, 666 (2022).

[2] Mohammad Mahdi Altakach, Priyanka Lamba, Fabio Maltoni, Kentarou Mawatari, and Kazuki Sakurai, "Quantum information and CP measurement in $H \to \tau^+ \tau^-$ at future lepton colliders", arXiv:2211.10513.

[3] Rachel Ashby-Pickering, Alan J. Barr, and Agnieszka Wierzchucka, "Quantum state tomography, entanglement detection and Bell violation prospects in weak decays of massive particles", arXiv:2209.13990.

[4] Marco Fabbrichesi, Roberto Floreanini, and Emidio Gabrielli, "Constraining new physics in entangled two-qubit systems: top-quark, tau-lepton and photon pairs", arXiv:2208.11723.

[5] Podist Kurashvili and Levan Chotorlishvili, "Quantum discord and entropic measures of two relativistic fermions", arXiv:2207.12963.

[6] Rafael Aoude, Eric Madge, Fabio Maltoni, and Luca Mantani, "Quantum SMEFT tomography: Top quark pair production at the LHC", Physical Review D 106 5, 055007 (2022).

[7] Yoav Afik and Juan Ramón Muñoz de Nova, "Quantum discord and steering in top quarks at the LHC", arXiv:2209.03969.

[8] J. A. Aguilar-Saavedra, A. Bernal, J. A. Casas, and J. M. Moreno, "Testing entanglement and Bell inequalities in $H \to ZZ$", arXiv:2209.13441.

[9] Claudio Severi and Eleni Vryonidou, "Quantum entanglement and top spin correlations in SMEFT at higher orders", arXiv:2210.09330.

[10] J. A. Aguilar-Saavedra, "Laboratory-frame tests of quantum entanglement in $H \to WW$", arXiv:2209.14033.

[11] Luca Mantani, "Quantum SMEFT tomography: top quark pair", arXiv:2211.03428.

The above citations are from SAO/NASA ADS (last updated successfully 2022-11-30 10:49:31). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2022-11-30 10:49:29).