Subradiant edge states in an atom chain with waveguide-mediated hopping

Ciaran McDonnell1 and Beatriz Olmos1,2

1School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
2Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We analyze the topological and dynamical properties of a system formed by two chains of identical emitters coupled to a waveguide, whose guided modes induce all-to-all excitation hopping. We find that, in the single excitation limit, the bulk topological properties of the Hamiltonian that describes the coherent dynamics of the system are identical to the ones of a one-dimensional Su-Schrieffer-Heeger (SSH) model. However, due to the long-range character of the exchange interactions, we find weakening of the bulk-boundary correspondence. This is illustrated by the variation of the localization length and mass gap of the edge states encountered as we vary the lattice constant and offset between the chains. Most interestingly, we analytically identify parameter regimes where edge states arise which are fully localized to the boundaries of the chain, independently of the system size. These edge states are shown to be not only robust against positional disorder of the atoms in the chain, but also subradiant, i.e., dynamically stable even in the presence of inevitable dissipation processes, establishing the capacity of waveguide QED systems for the realization of symmetry protected topological phases.

The emergence of so-called edge states as a hallmark of a topological phase, e.g. electrons skipping along the boundaries of a 2D electon gas in the Quantum Hall effect, is well known in non-interacting systems and also in systems where short-ranged hopping is possible. In this paper, we demonstrate the presence of these edge states in a fully-connected system, i.e., where excitation hopping may happen across all nodes in the network. We base our theoretical study on a quantum optics platform that is nowadays not only experimentally feasible but also one of the candidates for the realization of quatum information processing: a gas of atoms coupled to a nanophotonic waveguide. We find that states that are localized on the boundaries of a chain of emitters can be created, which, moreover, possess an extremely long lifetime due to the presence of collective dissipation in the system.

► BibTeX data

► References

[1] Michael Victor Berry. ``Quantal phase factors accompanying adiabatic changes''. Proc. Royal Soc. A 392, 45 (1984).

[2] J.K. Asbóth, L. Oroszlány, and A. Pályi. ``The su-schrieffer-heeger (ssh) model''. Pages 1–22. Springer International Publishing. Cham (2016).

[3] X.-G. Wen. ``Colloquium: Zoo of quantum-topological phases of matter''. Rev. Mod. Phys. 89, 041004 (2017).

[4] X.-L. Qi and S.-C. Zhang. ``Topological insulators and superconductors''. Rev. Mod. Phys. 83, 1057 (2011).

[5] A.Yu. Kitaev. ``Fault-tolerant quantum computation by anyons''. Ann.Phys. 303, 2 (2003).

[6] Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma. ``Non-abelian anyons and topological quantum computation''. Rev. Mod. Phys. 80, 1083 (2008).

[7] Ville Lahtinen and Jiannis K. Pachos. ``A Short Introduction to Topological Quantum Computation''. SciPost Phys. 3, 021 (2017).

[8] Bernard Field and Tapio Simula. ``Introduction to topological quantum computation with non-abelian anyons''. Quantum Sci. Technol. 3, 045004 (2018).

[9] Stefano Longhi, Gian Luca Giorgi, and Roberta Zambrini. ``Landau–zener topological quantum state transfer''. Adv. Quantum Technol. 2, 1800090 (2019).

[10] Felippo M. D'Angelis, Felipe A. Pinheiro, David Guéry-Odelin, Stefano Longhi, and François Impens. ``Fast and robust quantum state transfer in a topological su-schrieffer-heeger chain with next-to-nearest-neighbor interactions''. Phys. Rev. Research 2, 033475 (2020).

[11] Nicolai Lang and Hans Peter Büchler. ``Topological networks for quantum communication between distant qubits''. npj Quantum Inf. 3, 47 (2017).

[12] Daniel Litinski, Markus S. Kesselring, Jens Eisert, and Felix von Oppen. ``Combining topological hardware and topological software: Color-code quantum computing with topological superconductor networks''. Phys. Rev. X 7, 031048 (2017).

[13] Nicolai Lang and Hans Peter Büchler. ``Strictly local one-dimensional topological quantum error correction with symmetry-constrained cellular automata''. SciPost Phys. 4, 007 (2018).

[14] Roman Stricker, Davide Vodola, Alexander Erhard, Lukas Postler, Michael Meth, Martin Ringbauer, Philipp Schindler, Thomas Monz, Markus Müller, and Rainer Blatt. ``Experimental deterministic correction of qubit loss''. Nature 585, 207 (2020).

[15] Lisa M. Nash, Dustin Kleckner, Alismari Read, Vincenzo Vitelli, Ari M. Turner, and William T. M. Irvine. ``Topological mechanics of gyroscopic metamaterials''. Proc. Nat. Ac. Sci. 112, 14495 (2015).

[16] Sunil Mittal, Sriram Ganeshan, Jingyun Fan, Abolhassan Vaezi, and Mohammad Hafezi. ``Lasing in topological edge states of a one-dimensional lattice''. Nat. Photonics 10, 180 (2016).

[17] P. St-Jean, V. Goblot, E. Galopin, A. Lemaître, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo. ``Lasing in topological edge states of a one-dimensional lattice''. Nat. Photonics 11, 651 (2017).

[18] Sabyasachi Barik, Aziz Karasahin, Christopher Flower, Tao Cai, Hirokazu Miyake, Wade DeGottardi, Mohammad Hafezi, and Edo Waks. ``A topological quantum optics interface''. Science 359, 666–668 (2018).

[19] Tomoki Ozawa, Hannah M. Price, Alberto Amo, Nathan Goldman, Mohammad Hafezi, Ling Lu, Mikael C. Rechtsman, David Schuster, Jonathan Simon, Oded Zilberberg, and Iacopo Carusotto. ``Topological photonics''. Rev. Mod. Phys. 91, 015006 (2019).

[20] Sebastian Weber, Sylvain de Léséleuc, Vincent Lienhard, Daniel Barredo, Thierry Lahaye, Antoine Browaeys, and Hans Peter Büchler. ``Topologically protected edge states in small rydberg systems''. Quantum Sci. Technol. 3, 044001 (2018).

[21] Sylvain de Léséleuc, Vincent Lienhard, Pascal Scholl, Daniel Barredo, Sebastian Weber, Nicolai Lang, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. ``Observation of a symmetry-protected topological phase of interacting bosons with rydberg atoms''. Science 365, 775 (2019).

[22] Robert J. Bettles, Jiří Minář, Charles S. Adams, Igor Lesanovsky, and Beatriz Olmos. ``Topological properties of a dense atomic lattice gas''. Phys. Rev. A 96, 041603 (2017).

[23] J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin. ``Topological quantum optics in two-dimensional atomic arrays''. Phys. Rev. Lett. 119, 023603 (2017).

[24] Shinsei Ryu, Andreas P Schnyder, Akira Furusaki, and Andreas W W Ludwig. ``Topological insulators and superconductors: tenfold way and dimensional hierarchy''. New J. Phys. 12, 065010 (2010).

[25] Simon Lieu, Max McGinley, and Nigel R. Cooper. ``Tenfold way for quadratic lindbladians''. Phys. Rev. Lett. 124, 040401 (2020).

[26] Zixian Zhou, Liang-Liang Wan, and Zhi-Fang Xu. ``Topological classification of excitations in quadratic bosonic systems''. J. Phys. A: Math. Theor. 53, 425203 (2020).

[27] Xiao-Liang Qi, Yong-Shi Wu, and Shou-Cheng Zhang. ``General theorem relating the bulk topological number to edge states in two-dimensional insulators''. Phys. Rev. B 74, 045125 (2006).

[28] M. Z. Hasan and C. L. Kane. ``Colloquium: Topological insulators''. Rev. Mod. Phys. 82, 3045–3067 (2010).

[29] Linhu Li, Zhihao Xu, and Shu Chen. ``Topological phases of generalized Su-Schrieffer-Heeger models''. Phys. Rev. B 89, 085111 (2014).

[30] Davide Vodola, Luca Lepori, Elisa Ercolessi, Alexey V. Gorshkov, and Guido Pupillo. ``Kitaev Chains with Long-Range Pairing''. Phys. Rev. Lett. 113, 156402 (2014).

[31] Davide Vodola, Luca Lepori, Elisa Ercolessi, and Guido Pupillo. ``Long-range Ising and Kitaev models: phases, correlations and edge modes''. New J. Phys. 18, 015001 (2015).

[32] Antonio Alecce and Luca Dell'Anna. ``Extended Kitaev chain with longer-range hopping and pairing''. Phys. Rev. B 95, 195160 (2017).

[33] L Lepori and L Dell’Anna. ``Long-range topological insulators and weakened bulk-boundary correspondence''. New J. Phys. 19, 103030 (2017).

[34] Chao Li and Andrey Miroshnichenko. ``Extended SSH Model: Non-Local Couplings and Non-Monotonous Edge States''. Physics 1, 2 (2018).

[35] S. Longhi. ``Probing one-dimensional topological phases in waveguide lattices with broken chiral symmetry''. Opt. Lett. 43, 4639–4642 (2018).

[36] Simon R. Pocock, Xiaofei Xiao, Paloma A. Huidobro, and Vincenzo Giannini. ``Topological plasmonic chain with retardation and radiative effects''. ACS Photonics 5, 2271–2279 (2018).

[37] Simon R. Pocock, Paloma A. Huidobro, and Vincenzo Giannini. ``Bulk-edge correspondence and long-range hopping in the topological plasmonic chain''. Nanophotonics 8, 1337–1347 (2019).

[38] Beatriz Pérez-González, Miguel Bello, Alvaro Gómez-León, and Gloria Platero. ``Interplay between long-range hopping and disorder in topological systems''. Phys. Rev. B 99, 035146 (2019).

[39] Bo-Hung Chen and Dah-Wei Chiou. ``An elementary rigorous proof of bulk-boundary correspondence in the generalized su-schrieffer-heeger model''. Phys. Lett. A 384, 126168 (2020).

[40] Hsiu-Chuan Hsu and Tsung-Wei Chen. ``Topological anderson insulating phases in the long-range su-schrieffer-heeger model''. Phys. Rev. B 102, 205425 (2020).

[41] Zhi-Qiang Jiao, Stefano Longhi, Xiao-Wei Wang, Jun Gao, Wen-Hao Zhou, Yao Wang, Yu-Xuan Fu, Li Wang, Ruo-Jing Ren, Lu-Feng Qiao, and Xian-Min Jin. ``Experimentally detecting quantized zak phases without chiral symmetry in photonic lattices''. Phys. Rev. Lett. 127, 147401 (2021).

[42] R. G. Dias and A. M. Marques. ``Long-range hopping and indexing assumption in one-dimensional topological insulators''. Phys. Rev. B 105, 035102 (2022).

[43] W. P. Su, J. R. Schrieffer, and A. J. Heeger. ``Solitons in Polyacetylene''. Phys. Rev. Lett. 42, 1698–1701 (1979).

[44] D E Chang, L Jiang, A V Gorshkov, and H J Kimble. ``Cavity QED with atomic mirrors''. New J. Phys. 14, 063003 (2012).

[45] Titas Chanda, Rebecca Kraus, Giovanna Morigi, and Jakub Zakrzewski. ``Self-organized topological insulator due to cavity-mediated correlated tunneling''. Quantum 5, 501 (2021).

[46] M. Bello, G. Platero, J.I. Cirac, and A. González-Tudela. ``Unconventional quantum optics in topological waveguide qed''. Sci. Adv. 5, eaaw0297 (2019).

[47] Eunjong Kim, Xueyue Zhang, Vinicius S. Ferreira, Jash Banker, Joseph K. Iverson, Alp Sipahigil, Miguel Bello, Alejandro González-Tudela, Mohammad Mirhosseini, and Oskar Painter. ``Quantum electrodynamics in a topological waveguide''. Phys. Rev. X 11, 011015 (2021).

[48] Fam Le Kien and A. Rauschenbeutel. ``Propagation of nanofiber-guided light through an array of atoms''. Phys. Rev. A 90, 063816 (2014).

[49] Fam Le Kien and A. Rauschenbeutel. ``Anisotropy in scattering of light from an atom into the guided modes of a nanofiber''. Phys. Rev. A 90, 023805 (2014).

[50] H. H. Jen. ``Quantum correlations of localized atomic excitations in a disordered atomic chain''. Phys. Rev. A 105, 023717 (2022).

[51] Alexander N. Poddubny. ``Driven anti-bragg subradiant states in waveguide quantum electrodynamics'' (2022).

[52] R. H. Lehmberg. ``Radiation from an $n$-atom system. i. general formalism''. Phys. Rev. A 2, 883–888 (1970).

[53] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H.J. Kimble, and D.E. Chang. ``Exponential Improvement in Photon Storage Fidelities Using Subradiance and “Selective Radiance” in Atomic Arrays''. Phys. Rev. X 7, 031024 (2017).

[54] Yu-Xiang Zhang, Chuan Yu, and Klaus Mølmer. ``Subradiant bound dimer excited states of emitter chains coupled to a one dimensional waveguide''. Phys. Rev. Research 2, 013173 (2020).

[55] Navketan Batra and Goutam Sheet. ``Physics with coffee and doughnuts''. Resonance 25, 765 (2020).

[56] Jun-Won Rhim, Jens H. Bardarson, and Robert-Jan Slager. ``Unified bulk-boundary correspondence for band insulators''. Phys. Rev. B 97, 115143 (2018).

[57] Paul Fendley. ``Strong zero modes and eigenstate phase transitions in the XYZ/​interacting majorana chain''. J. Phys. A: Math. Theor. 49, 30LT01 (2016).

[58] Dominic V. Else, Paul Fendley, Jack Kemp, and Chetan Nayak. ``Prethermal strong zero modes and topological qubits''. Phys. Rev. X 7, 041062 (2017).

[59] Jack Kemp, Norman Y Yao, Christopher R Laumann, and Paul Fendley. ``Long coherence times for edge spins''. J. Stat. Mech.: Theor. Exp. 2017, 063105 (2017).

[60] Loredana M. Vasiloiu, Federico Carollo, and Juan P. Garrahan. ``Enhancing correlation times for edge spins through dissipation''. Phys. Rev. B 98, 094308 (2018).

[61] Loredana M. Vasiloiu, Federico Carollo, Matteo Marcuzzi, and Juan P. Garrahan. ``Strong zero modes in a class of generalized ising spin ladders with plaquette interactions''. Phys. Rev. B 100, 024309 (2019).

[62] Loredana M. Vasiloiu, Apoorv Tiwari, and Jens H. Bardarson. ``Dephasing-enhanced Majorana zero modes in two-dimensional and three-dimensional higher-order topological superconductors''. Phy. Rev. B 106, L060307 (2022).

[63] Katja Klobas, Paul Fendley, and Juan P. Garrahan. ``Stochastic strong zero modes and their dynamical manifestations'' (2022).

[64] Jemma A Needham, Igor Lesanovsky, and Beatriz Olmos. ``Subradiance-protected excitation transport''. New J. Phys. 21, 073061 (2019).

[65] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble. ``Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons''. Rev. Mod. Phys. 90, 031002 (2018).

[66] Io-Chun Hoi, C. M. Wilson, Göran Johansson, Tauno Palomaki, Borja Peropadre, and Per Delsing. ``Demonstration of a single-photon router in the microwave regime''. Phys. Rev. Lett. 107, 073601 (2011).

[67] Su-Peng Yu, Juan A. Muniz, Chen-Lung Hung, and H. J. Kimble. ``Two-dimensional photonic crystals for engineering atom & light interactions''. PNAS 116, 12743–12751 (2019).

Cited by

[1] Thomas F. Allard and Guillaume Weick, "Multiple polaritonic edge states in a Su-Schrieffer-Heeger chain strongly coupled to a multimode cavity", Physical Review B 108 24, 245417 (2023).

[2] Mathias B. M. Svendsen and Beatriz Olmos, "Modified dipole-dipole interactions in the presence of a nanophotonic waveguide", Quantum 7, 1091 (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-15 11:34:24) and SAO/NASA ADS (last updated successfully 2024-04-15 11:34:25). The list may be incomplete as not all publishers provide suitable and complete citation data.