Security of quantum key distribution with detection-efficiency mismatch in the multiphoton case

Anton Trushechkin

Steklov Mathematical Institute of RAS, Steklov International Mathematical Center, Moscow 119991, Russia
Department of Mathematics and NTI Center for Quantum Communications, National University of Science and Technology MISIS, Moscow 119049, Russia
QRate, Skolkovo, Moscow 143025, Russia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Detection-efficiency mismatch is a common problem in practical quantum key distribution (QKD) systems. Current security proofs of QKD with detection-efficiency mismatch rely either on the assumption of the single-photon light source on the sender side or on the assumption of the single-photon input of the receiver side. These assumptions impose restrictions on the class of possible eavesdropping strategies. Here we present a rigorous security proof without these assumptions and, thus, solve this important problem and prove the security of QKD with detection-efficiency mismatch against general attacks (in the asymptotic regime). In particular, we adapt the decoy state method to the case of detection-efficiency mismatch.

🇺🇦 Quantum strongly condemns the 2022 invasion of Ukraine, the loss of life and war crimes inflicted by Russian forces. For more information on our policy on publishing articles by authors based in Russian institutions, see this post

Quantum key distribution (QKD) allows two distant parties to establish a common secret key for confidential messaging. In view of possible threat to the traditional public key from fault-tolerant quantum computers, QKD is believed to be an important part of future secure communication infrastructure. The first QKD protocol (named BB84) was discovered by Bennett and Brassard in 1984. Later first experiments and security proofs were proposed. Now QKD is a commercial technology with developed security proofs.

However, security proofs which take into account certain imperfection of hardware devices are still challenging. One of such imperfections is so called detection-efficiency mismatch, where two single-photon detectors have different quantum efficiencies, i.e., different probabilities of photon detection. Such a problem should be taken into account because it is practically impossible to make two absolutely identical detectors.

Mathematically, security proof for QKD with detection-efficiency mismatch for the general case is challenging because the Hilbert space we deal with is infinite-dimensional (a reduction to a finite-dimensional space that is possible for the case of identical detectors does not work here). So, fundamentally new approaches to prove the security was required. The main new method proposed in this work is an analytical bound of the number of multiphoton detection events using the entropic uncertainty relations. This allows us to reduce the problem to a finite-dimensional one. For the analytical solution of the finite-dimensional problem (which is still non-trivial), we propose to use symmetries of the problem.

Thus, in this paper, we proof the security of the BB84 protocol with detection-efficiency mismatch and analytically derive bounds for the secret key rate in this case. Also we adapt the decoy state method to the case of detection-efficiency mismatch.

► BibTeX data

► References

[1] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New York, 1984), p. 175.

[2] D. Mayers, Quantum key distribution and string oblivious transfer in noisy channels, arXiv:quant-ph/​9606003 (1996).

[3] D. Mayers, Unconditional security in quantum cryptography, JACM. 48, 351 (2001).

[4] P. W. Shor and J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett. 85, 441 (2000).

[5] R. Renner, Security of quantum key distribution, arXiv:quant-ph/​0512258 (2005).

[6] M. Koashi, Simple security proof of quantum key distribution based on complementarity, New J. Phys. 11, 045018 (2009).

[7] M. Tomamichel, C. C. W. Lim, N. Gisin, and R. Renner, Tight finite-key analysis for quantum cryptography, Nat. Commun. 3, 634 (2012).

[8] M. Tomamichel and A. Leverrier, A largely self-contained and complete security proof for quantum key distribution, Quantum 1, 14 (2017).

[9] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74, 145 (2002).

[10] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, Quantum cryptography, Rev. Mod. Phys. 81, 1301 (2009).

[11] E. Diamanti, H.-K. Lo, B. Qi, and Z. Yuan, Practical challenges in quantum key distribution, npj Quant. Inf. 2, 16025 (2016).

[12] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, Secure quantum key distribution with realistic devices, Rev. Mod. Phys. 92, 025002 (2020).

[13] N. Jain, B. Stiller, I. Khan, D. Elser, C. Marquardt, and G. Leuchs, Attacks on practical quantum key distribution systems (and how to prevent them), Contemporary Physics 57, 366 (2015).

[14] C. H. F. Fung, K. Tamaki, B. Qi, H.-K. Lo, and X. Ma, Security proof of quantum key distribution with detection efficiency mismatch, Quant. Inf. Comput. 9, 131 (2009).

[15] L. Lydersen and J. Skaar, Security of quantum key distribution with bit and basis dependent detector flaws, Quant. Inf. Comput. 10, 60 (2010).

[16] A. Winick, N. Lütkenhaus, and P. J. Coles, Reliable numerical key rates for quantum key distribution, Quantum 2, 77 (2018).

[17] M. K. Bochkov and A. S. Trushechkin, Security of quantum key distribution with detection-efficiency mismatch in the single-photon case: Tight bounds, Phys. Rev. A 99, 032308 (2019).

[18] J. Ma, Y. Zhou, X. Yuan, and X. Ma, Operational interpretation of coherence in quantum key distribution, Phys. Rev. A 99, 062325 (2019).

[19] N. J. Beaudry, T. Moroder, and N. Lütkenhaus, Squashing models for optical measurements in quantum communication, Phys. Rev. Lett. 101, 093601 (2008).

[20] T. Tsurumaru and K. Tamaki, Security proof for quantum-key-distribution systems with threshold detectors, Phys. Rev. A 78, 032302 (2008).

[21] O. Gittsovich, N. J. Beaudry, V. Narasimhachar, R. R. Alvarez, T. Moroder, and N. Lütkenhaus, Squashing model for detectors and applications to quantum-key-distribution protocols, Phys. Rev. A 89, 012325 (2014).

[22] Y. Zhang, P. J. Coles, A. Winick, J. Lin, and N. Lütkenhaus, Security proof of practical quantum key distribution with detection-efficiency mismatch, Phys. Rev. Res. 3, 013076 (2021).

[23] M. Dušek, M. Jahma, and N. Lütkenhaus, Unambiguous state discrimination in quantum cryptography with weak coherent states, Phys. Rev. A 62, 022306 (2000).

[24] N. Lütkenhaus and M. Jahma, Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack, New J. Phys. 4, 44 (2002).

[25] H.-K. Lo, X. Ma, and K. Chen, Decoy state quantum key distribution, Phys. Rev. Lett. 94, 230504 (2005).

[26] X.-B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography, Phys. Rev. Lett. 94, 230503 (2005).

[27] X. Ma, B. Qi, Y. Zhao, and H.-K. Lo, Practical decoy state for quantum key distribution, Phys. Rev. A 72, 012326 (2005).

[28] Z. Zhang, Q. Zhao, M. Razavi, and X. Ma, Improved key-rate bounds for practical decoy-state quantum-key-distribution systems, Phys. Rev. A 95, 012333 (2017).

[29] A. S. Trushechkin, E. O. Kiktenko, and A. K. Fedorov, Practical issues in decoy-state quantum key distribution based on the central limit theorem, Phys. Rev. A 96, 022316 (2017).

[30] C. Agnesi, M. Avesani, L. Calderaro, A. Stanco, G. Foletto, M. Zahidy, A. Scriminich, F. Vedovato, G. Vallone, and P. Villoresi, Simple quantum key distribution with qubit-based synchronization and a self-compensating polarization encoder, Optica 8, 284–290 (2020).

[31] Y. Zhang and N. Lütkenhaus, Entanglement verification with detection-efficiency mismatch, Phys. Rev. A 95, 042319 (2017).

[32] F. Dupuis, O. Fawzi, and R. Renner, Entropy accumulation, Comm. Math. 379, 867 (2020).

[33] F. Dupuis and O. Fawzi, Entropy accumulation with improved second-order term, IEEE Trans. Inf. Theory 65, 7596 (2019).

[34] T. Metger and R. Renner, Security of quantum key distribution from generalised entropy accumulation, arXiv:2203.04993 (2022).

[35] A. S. Holevo, Quantum Systems, Channels, Information. A Mathematical Introduction (De Gruyter, Berlin, 2012).

[36] C. H. F. Fung, X. Ma, and H. F. Chau, Practical issues in quantum-key-distribution postprocessing, Phys. Rev. A 81, 012318 (2010).

[37] I. Devetak and A. Winter, Distillation of secret key and entanglement from quantum states, Proc. R. Soc. London, Ser. A, 461, 207 (2005).

[38] C. H. Bennett, G. Brassard, and N. D. Mermin, Quantum cryptography without Bell’s theorem, Phys. Rev. Lett. 68, 557 (1992).

[39] M. Curty, M. Lewenstein, and N. Lütkenhaus, Entanglement as a precondition for secure quantum key distribution, Phys. Rev. Lett. 92, 217903 (2004).

[40] A. Ferenczi and N. Lütkenhaus, Symmetries in quantum key distribution and the connection between optimal attacks and optimal cloning, Phys. Rev. A 85, 052310 (2012).

[41] E. O. Kiktenko, A. S. Trushechkin, C. C. W. Lim, Y. V. Kurochkin, and A. K. Fedorov, Symmetric blind information reconciliation for quantum key distribution, Phys. Rev. Applied 8, 044017 (2017).

[42] E. O. Kiktenko, A. S. Trushechkin, and A. K. Fedorov, Symmetric blind information reconciliation and hash-function-based verification for quantum key distribution, Lobachevskii J. Math. 39, 992 (2018).

[43] E. O. Kiktenko, A. O. Malyshev, A. A. Bozhedarov, N. O. Pozhar, M. N. Anufriev, and A. K. Fedorov, Error estimation at the information reconciliation stage of quantum key distribution, J. Russ. Laser Res. 39, 558 (2018).

[44] D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, Security of quantum key distribution with imperfect devices, Quant. Inf. Comput. 5, 325 (2004).

[45] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner, The uncertainty principle in the presence of quantum memory, Nature Phys. 6, 659 (2010).

[46] P. J. Coles, L. Yu, V Gheorghiu, and R. B. Griffiths, Information-theoretic treatment of tripartite systems and quantum channels, Phys. Rev. A 83, 062338 (2011).

[47] P. J. Coles, E. M. Metodiev, and N. Lütkenhaus, Numerical approach for unstructured quantum key distribution, Nat. Commun. 7, 11712 (2016).

[48] Y. Zhao, C. H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems, Phys. Rev. A 78, 042333 (2008).

[49] A. Müller-Hermes and D. Reeb, Monotonicity of the quantum relative entropy under positive maps, Annales Henri Poincaré 18, 1777 (2017).

[50] H. Maassen and J. B. M. Uffink, Generalized entropic uncertainty relations, Phys. Rev. Lett. 60, 1103 (1988).

[51] S. Sajeed, P. Chaiwongkhot, J.-P. Bourgoin, T. Jennewein, N. Lütkenhaus, and V. Makarov, Security loophole in free-space quantum key distribution due to spatial-mode detector-efficiency mismatch, Phys. Rev. A 91, 062301 (2015).

[52] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden, Advances in quantum cryptography, Adv. Opt. Photon. 12, 1012 (2020).

[53] M. Bozzio, A. Cavaillés, E. Diamanti, A. Kent, and D. Pitalúa-García, Multiphoton and side-channel attacks in mistrustful quantum cryptography, PRX Quantum 2, 030338 (2021).

Cited by

[1] Sukhpal Singh Gill, Adarsh Kumar, Harvinder Singh, Manmeet Singh, Kamalpreet Kaur, Muhammad Usman, and Rajkumar Buyya, "Quantum Computing: A Taxonomy, Systematic Review and Future Directions", arXiv:2010.15559.

[2] Mathieu Bozzio, Adrien Cavaillès, Eleni Diamanti, Adrian Kent, and Damián Pitalúa-García, "Multiphoton and Side-Channel Attacks in Mistrustful Quantum Cryptography", PRX Quantum 2 3, 030338 (2021).

[3] Yanbao Zhang, Patrick J. Coles, Adam Winick, Jie Lin, and Norbert Lütkenhaus, "Security proof of practical quantum key distribution with detection-efficiency mismatch", Physical Review Research 3 1, 013076 (2021).

The above citations are from SAO/NASA ADS (last updated successfully 2022-12-08 06:42:56). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2022-12-08 06:42:54).