Statistical time-domain characterization of non-periodic optical clocks

Dario Cilluffo

Institute of Theoretical Physics & IQST, Ulm University, Albert-Einstein-Allee 11 89081, Ulm, Germany
Universit$\grave{a}$ degli Studi di Palermo, Dipartimento di Fisica e Chimica - Emilio Segrè, via Archirafi 36, I-90123 Palermo, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Measuring time means counting the occurrence of periodic phenomena. Over the past centuries a major effort was put to make stable and precise oscillators to be used as clock regulators. Here we consider a different class of clocks based on stochastic clicking processes. We provide a rigorous statistical framework to study the performances of such devices and apply our results to a single coherently driven two-level atom under photodetection as an extreme example of non-periodic clock. Quantum Jump MonteCarlo simulations and photon counting waiting time distribution will provide independent checks on the main results.

Using a simplified optical model, we show that the large deviation formalism of quantum trajectories can be easily exploited to study the performances of a particular class of clocks relying on stochastic clicking processes. The proof of principle presented here provides a clear application of thermodynamics of quantum trajectories to practical problems and, at the same time, it suggests further connections with metrology.

► BibTeX data

► References

[1] G. W. Ford. ``The fluctuation-dissipation theorem''. Contemporary Physics 58, 244–252 (2017).

[2] Henry Reginald Arnulph Mallock. ``Pendulum clocks and their errors''. Proceeding of the Royal Society A 85 (1911).

[3] M Kesteven. ``On the mathematical theory of clock escapements''. American Journal of Physics 46, 125–129 (1978).

[4] Peter Hoyng. ``Dynamics and performance of clock pendulums''. American Journal of Physics 82, 1053–1061 (2014).

[5] S. Ghosh, F. Sthal, J. Imbaud, M. Devel, R. Bourquin, C. Vuillemin, A. Bakir, N. Cholley, P. Abbe, D. Vernier, and G. Cibiel. ``Theoretical and experimental investigations of 1/​f noise in quartz crystal resonators''. 2013 Joint European Frequency and Time Forum International Frequency Control Symposium (EFTF/​IFC)Pages 737–740 (2013).

[6] G. J. Milburn. ``The thermodynamics of clocks''. Contemporary Physics 61, 69–95 (2020).

[7] Paul Erker, Mark T. Mitchison, Ralph Silva, Mischa P. Woods, Nicolas Brunner, and Marcus Huber. ``Autonomous quantum clocks: Does thermodynamics limit our ability to measure time?''. Phys. Rev. X 7, 031022 (2017).

[8] Mischa P. Woods. ``Autonomous ticking clocks from axiomatic principles''. Quantum 5, 381 (2021).

[9] A. N. Pearson, Y. Guryanova, P. Erker, E. A. Laird, G. A. D. Briggs, M. Huber, and N. Ares. ``Measuring the thermodynamic cost of timekeeping''. Phys. Rev. X 11, 021029 (2021).

[10] Heinz-Peter Breuer and Francesco Petruccione. ``The theory of open quantum systems''. Oxford University Press. (2007).

[11] Howard M. Wiseman and Gerard J. Milburn. ``Quantum measurement and control''. Volume 9780521804424, pages 1–460. Cambridge university press. (2009).

[12] Serge Haroche and Jean Michel Raimond. ``Exploring the Quantum: Atoms, Cavities, and Photons''. Oxford Univ. Press. Oxford (2006).

[13] Crispin Gardiner, Peter Zoller, and Peter Zoller. ``Quantum noise: a handbook of markovian and non-markovian quantum stochastic methods with applications to quantum optics''. Springer Science & Business Media. (2004).

[14] Todd A. Brun. ``Continuous measurements, quantum trajectories, and decoherent histories''. Physical Review A 61 (2000).

[15] Todd A. Brun. ``A simple model of quantum trajectories''. American Journal of Physics 70, 719–737 (2002).

[16] M. B. Plenio and P. L. Knight. ``The quantum-jump approach to dissipative dynamics in quantum optics''. Rev. Mod. Phys. 70, 101–144 (1998).

[17] Daniel Manzano and Pablo I Hurtado. ``Symmetry and the thermodynamics of currents in open quantum systems''. Phys. Rev. B 90, 125138 (2014).

[18] VV Belokurov, OA Khrustalev, VA Sadovnichy, and OD Timofeevskaya. ``Conditional density matrix: Systems and subsystems in quantum mechanics'' (2002). url:​abs/​quant-ph/​0210149.

[19] Vittorio Gorini, Andrzej Kossakowski, and Ennackal Chandy George Sudarshan. ``Completely positive dynamical semigroups of n-level systems''. Journal of Mathematical Physics 17, 821–825 (1976).

[20] Goran Lindblad. ``On the generators of quantum dynamical semigroups''. Communications in Mathematical Physics 48, 119–130 (1976).

[21] RS Ellis. ``An overview of the theory of large deviations and applications to statistical mechanics.''. Insurance Mathematics and Economics 3, 232–233 (1996).

[22] Hugo Touchette. ``The large deviation approach to statistical mechanics''. Physics Reports 478, 1–69 (2009).

[23] Angelo Vulpiani, Fabio Cecconi, Massimo Cencini, Andrea Puglisi, and Davide Vergni. ``Large deviations in physics''. The Legacy of the Law of Large Numbers (Berlin: Springer) (2014).

[24] Juan P Garrahan and Igor Lesanovsky. ``Thermodynamics of quantum jump trajectories''. Phys. Rev. Lett. 104, 160601 (2010).

[25] Charles Jordan and Károly Jordán. ``Calculus of finite differences''. Volume 33. American Mathematical Soc. (1965).

[26] Bassano Vacchini. ``General structure of quantum collisional models''. International Journal of Quantum Information 12, 1461011 (2014).

[27] Howard Carmichael. ``An open systems approach to quantum optics: lectures presented at the université libre de bruxelles, october 28 to november 4, 1991''. Volume 18. Springer Science & Business Media. (2009).

[28] H. J. Carmichael, Surendra Singh, Reeta Vyas, and P. R. Rice. ``Photoelectron waiting times and atomic state reduction in resonance fluorescence''. Physical Review A 39, 1200–1218 (1989).

[29] A. A. Gangat and G. J. Milburn. ``Quantum clocks driven by measurement'' (2021). arXiv:2109.05390.

[30] James M. Hickey, Sam Genway, Igor Lesanovsky, and Juan P. Garrahan. ``Thermodynamics of quadrature trajectories in open quantum systems''. Physical Review A 86 (2012).

[31] Dario Cilluffo, Salvatore Lorenzo, G Massimo Palma, and Francesco Ciccarello. ``Quantum jump statistics with a shifted jump operator in a chiral waveguide''. Journal of Statistical Mechanics: Theory and Experiment 2019, 104004 (2019).

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-08-07 15:15:34). On SAO/NASA ADS no data on citing works was found (last attempt 2022-08-07 15:15:35).