Does causal dynamics imply local interactions?

Zoltán Zimborás1,2,3, Terry Farrelly4,5, Szilárd Farkas1, and Lluis Masanes6,7

1Wigner Research Centre for Physics, H-1121, Budapest, Hungary
2MTA-BME Lendület Quantum Information Theory Research Group, Budapest, Hungary
3Mathematical Institute, Budapest University of Technology and Economics, H-1111, Budapest, Hungary
4Institut für Theoretische Physik, Leibniz Universität, Appelstraße 2, 30167 Hannover, Germany
5ARC Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
6Computer Science Department, University College London, United Kingdom.
7London Centre for Nanotechnology, University College London, United Kingdom.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We consider quantum systems with causal dynamics in discrete spacetimes, also known as quantum cellular automata (QCA). Due to time-discreteness this type of dynamics is not characterized by a Hamiltonian but by a one-time-step unitary. This can be written as the exponential of a Hamiltonian but in a highly non-unique way. We ask if any of the Hamiltonians generating a QCA unitary is local in some sense, and we obtain two very different answers. On one hand, we present an example of QCA for which all generating Hamiltonians are fully non-local, in the sense that interactions do not decay with the distance. We expect this result to have relevant consequences for the classification of topological phases in Floquet systems, given that this relies on the effective Hamiltonian.

On the other hand, we show that all one-dimensional quasi-free fermionic QCAs have quasi-local generating Hamiltonians, with interactions decaying exponentially in the massive case and algebraically in the critical case. We also prove that some integrable systems do not have local, quasi-local nor low-weight constants of motion; a result that challenges the standard definition of integrability.

► BibTeX data

► References

[1] A. Agaltsov. Eigenvalues of analytic families of operators, 2018. URL https:/​/​​homes/​ agaltsov/​notes/​holomkato76.html.

[2] A. Ahlbrecht. Asymptotic behavior of decoherent and interacting quantum walks. PhD thesis, Leibniz Universität Hannover, 2012. URL https:/​/​​10.1007/​s11128-012-0389-4.

[3] P. Arrighi. An overview of quantum cellular automata. Natural Computing, 2019. https:/​/​​10.48550/​arXiv.1904.12956. https:/​/​​10.1007/​s11047-019-09762-6.

[4] A. Bisio, G. M. D'Ariano, P. Perinotti, and A. Tosini. Weyl, Dirac and Maxwell Quantum Cellular Automata: Analytical Solutions and Phenomenological Predictions of the Quantum Cellular Automata Theory of Free Field. Found. Phys., 45 (10): 1203–1221, 2015. https:/​/​​10.1007/​s10701-015-9927-0.

[5] H. Brezis and L. Nirenberg. Degree theory and BMO; part I: Compact manifolds without boundaries. Selecta Mathematica, 1 (2): 197–263, 1995. ISSN 1022-1824. http:/​/​​10.1007/​BF01671566.

[6] C. Cedzich, T. Geib, F. A. Grünbaum, C. Stahl, L. Velázquez, A. H. Werner, and R. F. Werner. The topological classification of one-dimensional symmetric quantum walks. Annales Henri Poincaré, 19 (2): 325–383, 2018. https:/​/​​10.1007/​s00023-017-0630-x.

[7] R. F. Werner D. J. Shepherd, T. Franz. Universally programmable quantum cellular automaton. Phys. Rev. Lett., 97: 020502, 2006. https:/​/​​10.1103/​PhysRevLett.97.020502.

[8] G. M. D'Ariano. The quantum field as a quantum computer. Physics Letters A, 376 (5): 697–702, 2012a. http:/​/​​10.1016/​j.physleta.2011.12.021.

[9] G. M. D'Ariano. Physics as quantum information processing: quantum fields as quantum automata. Foundations of Probability and Physics - 6, AIP Conf. Proc., page 1424 371, 2012b. https:/​/​​10.48550/​arXiv.1110.6725.

[10] G. M. D'Ariano and P. Perinotti. Derivation of the Dirac equation from principles of information processing. Phys. Rev. A, 90: 062106, 2014. https:/​/​​10.1103/​PhysRevA.90.062106.

[11] T. Farrelly and J. Streich. Discretizing quantum field theories for quantum simulation. arxiv preprint arXiv:2002.02643, 2020. https:/​/​​10.48550/​arXiv.2002.02643.

[12] T. C. Farrelly. A review of Quantum Cellular Automata. Quantum, 4: 368, 2020. ISSN 2521-327X. https:/​/​​10.22331/​q-2020-11-30-368.

[13] T. C. Farrelly and A. J. Short. Discrete spacetime and relativistic quantum particles. Phys. Rev. A, 89: 062109, 2014. https:/​/​​10.1103/​PhysRevA.89.062109.

[14] R. P. Feynman. Simulating physics with computers. International Journal of Theoretical Physics, 21: 467–488, 1982. ISSN 0020-7748. https:/​/​​10.1007/​BF02650179.

[15] C. Gogolin, M. P. Müller, and J. Eisert. Absence of thermalization in nonintegrable systems. Phys. Rev. Lett., 106: 040401, 2011. https:/​/​​10.1103/​PhysRevLett.106.040401.

[16] D. Gross, V. Nesme, H. Vogts, and R. F. Werner. Index theory of one dimensional quantum walks and cellular automata. Communications in Mathematical Physics, 310: 419–454, 2012. ISSN 0010-3616. http:/​/​​10.1007/​s00220-012-1423-1.

[17] J. Gütschow, V. Nesme, and R. F. Werner. The fractal structure of cellular automata on abelian groups. Discrete Mathematics & Theoretical Computer Science, DMTCS Proceedings vol. AL, Automata 2010 - 16th Intl. Workshop on CA and DCS, 2010a. https:/​/​​10.46298/​dmtcs.2759.

[18] J. Gütschow, S. Uphoff, R. F. Werner, and Z. Zimborás. Time asymptotics and entanglement generation of clifford quantum cellular automata. Journal of Mathematical Physics, 51 (1): 015203, 2010b. http:/​/​​10.1063/​1.3278513.

[19] J. Haah. Clifford quantum cellular automata: Trivial group in 2d and witt group in 3d. J. Math. Phys., 62: 092202, 2021. https:/​/​​10.1063/​5.0022185.

[20] J. Haah, L. Fidkowski, and M. B. Hastings. Nontrivial quantum cellular automata in higher dimensions. arXiv preprint arXiv:1812.01625, 2018. https:/​/​​10.48550/​arXiv.1812.01625.

[21] L. E. Hillberry, M. T. Jones, D. L. Vargas, P. Rall, N. Y. Halpern, N. Bao, S. Notarnicola, S. Montangero, and L. D. Carr. Entangled quantum cellular automata, physical complexity, and Goldilocks rules. Quantum Sci. Technol., 6: 045017, 2020. https:/​/​​10.1088/​2058-9565/​ac1c41.

[22] P. Jordan and E. Wigner. Über das Paulische Äquivalenzverbot. Z. Physik, 47: 631–651, 1928. URL http:/​/​​article/​10.1007/​BF01331938.

[23] T. Kato. Perturbation theory for linear operators. Springer, 2nd edition, 1995. https:/​/​​10.1007/​978-3-642-66282-9.

[24] S. G. Krantz and H. R. Parks. A Primer of Real Analytic Functions. A Primer of Real Analytic Functions. Birkhäuser Boston, 2002. ISBN 9780817642648. https:/​/​​10.1007/​978-0-8176-8134-0.

[25] E. H. Lieb and D. W. Robinson. The finite group velocity of quantum spin systems. Communications in Mathematical Physics, 28 (3): 251–257, 1972. https:/​/​​10.1007/​BF01645779.

[26] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2010. https:/​/​​10.1017/​CBO9780511976667f.

[27] C. D. Offner. A little harmonic analysis. http:/​/​​ offner/​files/​harm_an.pdf.

[28] T. J. Osborne. Approximate locality for quantum systems on graphs. Phys. Rev. Lett., 101: 140503, 2008. https:/​/​​10.1103/​PhysRevLett.101.140503.

[29] D. Ranard, M. Walter, and F. Witteveen. A converse to Lieb-Robinson bounds in one dimension using index theory. arxiv preprint arXiv:2012.00741, 2020. https:/​/​​10.48550/​arXiv.2012.00741.

[30] D. M. Schlingemann, H. Vogts, and R. F. Werner. On the structure of clifford quantum cellular automata. Journal of Mathematical Physics, 49 (11): 112104, 2008. https:/​/​​10.1063/​1.3005565.

[31] B. Schumacher and R. F. Werner. Reversible Quantum Cellular Automata. arxiv preprint arXiv:0405174, 2004. https:/​/​​10.48550/​arXiv.quant-ph/​0405174.

[32] D. T. Stephen, H. P. Nautrup, J. Bermejo-Vega, J. Eisert, and R. Raussendorf. Subsystem symmetries, quantum cellular automata, and computational phases of quantum matter. Quantum, 3: 142, 2019. https:/​/​​10.22331/​q-2019-05-20-142.

[33] B. Tarasinski, J. K. Asbóth, and J. P. Dahlhaus. Scattering theory of topological phases in discrete-time quantum walks. Physical Review A, 89 (4): 042327, 2014. https:/​/​​10.1103/​PhysRevA.89.042327.

[34] J. Watrous. On one-dimensional quantum cellular automata. Proceedings of the 36th Annual IEEE Symposium on Foundations of Computer Science, pages 528–537, 1995. https:/​/​​10.1109/​sfcs.1995.492583.

[35] B. Yoshida. Exotic topological order in fractal spin liquids. Physical Review B, 88 (12): 125122, 2013. https:/​/​​10.1103/​PhysRevB.88.125122.

Cited by

[1] Grace M. Sommers, David A. Huse, and Michael J. Gullans, "Crystalline Quantum Circuits", PRX Quantum 4 3, 030313 (2023).

[2] Tom Farshi, Jonas Richter, Daniele Toniolo, Arijeet Pal, and Lluis Masanes, "Absence of Localization in Two-Dimensional Clifford Circuits", PRX Quantum 4 3, 030302 (2023).

[3] Tom Farshi, Daniele Toniolo, Carlos E. González-Guillén, Álvaro M. Alhambra, and Lluis Masanes, "Mixing and localization in random time-periodic quantum circuits of Clifford unitaries", Journal of Mathematical Physics 63 3, 032201 (2022).

[4] Terry Farrelly, "A review of Quantum Cellular Automata", Quantum 4, 368 (2020).

[5] Daniel Ranard, Michael Walter, and Freek Witteveen, "A Converse to Lieb-Robinson Bounds in One Dimension Using Index Theory", Annales Henri Poincaré 23 11, 3905 (2022).

[6] Henrik Wilming and Albert H. Werner, "Lieb-Robinson bounds imply locality of interactions", Physical Review B 105 12, 125101 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-15 11:03:39) and SAO/NASA ADS (last updated successfully 2024-04-15 11:03:40). The list may be incomplete as not all publishers provide suitable and complete citation data.