Non-ergodic delocalized phase with Poisson level statistics

Weichen Tang1 and Ivan M. Khaymovich2,3,4

1Department of Physics, University of California, Berkeley, California 94720, USA
2Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187-Dresden, Germany
3Institute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, GSP-105, Russia
4Nordita, Stockholm University and KTH Royal Institute of Technology Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Motivated by the many-body localization (MBL) phase in generic interacting disordered quantum systems, we develop a model simulating the same eigenstate structure like in MBL, but in the random-matrix setting. Demonstrating the absence of energy level repulsion (Poisson statistics), this model carries non-ergodic eigenstates, delocalized over the extensive number of configurations in the Hilbert space. On the above example, we formulate general conditions to a single-particle and random-matrix models in order to carry such states, based on the transparent generalization of the Anderson localization of single-particle states and multiple resonances.

Many-body localization is a phenomenon, providing a unique possibility for an isolated interacting quantum system to avoid thermalization and to keep the information about its initial state.
Being the localization in the real space, many-body localization not only suppresses the transport, but also avoids repulsion of energy levels and makes eigenstates of an interacting system to be non-ergodic, but extended in the space of configurations (Hilbert space).
Facing the difficulties of describing many-body quantum systems, many researchers focus on the universal statistical description of the above phenomenon in a random-matrix setting.

Motivated by the many-body localization phase, we develop a random-matrix model simulating the same eigenstate structure.
Demonstrating the absence of energy level repulsion (Poisson statistics), this model carries non-ergodic eigenstates, delocalized over the extensive number of configurations in the Hilbert space.
Using the above example and a transparent generalization of the Anderson localization to multiple resonances, we formulate general conditions to realize non-ergodic states with Poisson level statistics.

► BibTeX data

► References

[1] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 91: 021001, May 2019. 10.1103/​RevModPhys.91.021001. URL https:/​/​doi.org/​10.1103/​RevModPhys.91.021001.
https:/​/​doi.org/​10.1103/​RevModPhys.91.021001

[2] F. Alet and N. Laflorencie. Many-body localization: An introduction and selected topics. Comptes Rendus Physique, 19 (6): 498 – 525, 2018. ISSN 1631-0705. 10.1016/​j.crhy.2018.03.003. URL https:/​/​doi.org/​10.1016/​j.crhy.2018.03.003. Quantum simulation /​ Simulation quantique.
https:/​/​doi.org/​10.1016/​j.crhy.2018.03.003

[3] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux. Distribution of the ratio of consecutive level spacings in random matrix ensembles. Phys. Rev. Lett., 110: 084101, 2013a. 10.1103/​PhysRevLett.110.084101. URL https:/​/​doi.org/​10.1103/​PhysRevLett.110.084101.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.084101

[4] Y. Y. Atas, E. Bogomolny, O. Giraud, P. Vivo, and E. Vivo. Joint probability densities of level spacing ratios in random matrices. Journal of Physics A: Mathematical and Theoretical, 46 (35): 355204, aug 2013b. 10.1088/​1751-8113/​46/​35/​355204. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​10.1088/​1751-8113/​46/​35/​355204

[5] J. H. Bardarson, F. Pollmann, and J. E. Moore. Unbounded growth of entanglement in models of many-body localization. Phys. Rev. Lett., 109: 017202, Jul 2012. 10.1103/​PhysRevLett.109.017202. URL https:/​/​doi.org/​10.1103/​PhysRevLett.109.017202.
https:/​/​doi.org/​10.1103/​PhysRevLett.109.017202

[6] D. M. Basko, I. L. Aleiner, and B. L. Altshuler. Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Annals of Physics, 321 (5): 1126 – 1205, 2006. ISSN 0003-4916. 10.1016/​j.aop.2005.11.014. URL https:/​/​doi.org/​10.1016/​j.aop.2005.11.014.
https:/​/​doi.org/​10.1016/​j.aop.2005.11.014

[7] S. Bera, G. De Tomasi, I. M. Khaymovich, and A. Scardicchio. Return probability for the Anderson model on the random regular graph. Phys. Rev. B, 98: 134205, 2018. 10.1103/​PhysRevB.98.134205. URL https:/​/​doi.org/​10.1103/​PhysRevB.98.134205.
https:/​/​doi.org/​10.1103/​PhysRevB.98.134205

[8] R. Berkovits. Super-Poissonian behavior of the Rosenzweig-Porter model in the nonergodic extended regime. Phys. Rev. B, 102: 165140, Oct 2020. 10.1103/​PhysRevB.102.165140. URL https:/​/​doi.org/​10.1103/​PhysRevB.102.165140.
https:/​/​doi.org/​10.1103/​PhysRevB.102.165140

[9] R. Berkovits. Probing the metallic energy spectrum beyond the thouless energy scale using singular value decomposition. Phys. Rev. B, 104: 054207, Aug 2021. 10.1103/​PhysRevB.104.054207. URL https:/​/​doi.org/​10.1103/​PhysRevB.104.054207.
https:/​/​doi.org/​10.1103/​PhysRevB.104.054207

[10] G. Biroli and M. Tarzia. Delocalized glassy dynamics and many-body localization. Phys. Rev. B, 96: 201114(R), Nov 2017. 10.1103/​PhysRevB.96.201114. URL https:/​/​doi.org/​10.1103/​PhysRevB.96.201114.
https:/​/​doi.org/​10.1103/​PhysRevB.96.201114

[11] G. Biroli and M. Tarzia. Anomalous dynamics on the ergodic side of the many-body localization transition and the glassy phase of directed polymers in random media. Phys. Rev. B, 102: 064211, Aug 2020. 10.1103/​PhysRevB.102.064211. URL https:/​/​doi.org/​10.1103/​PhysRevB.102.064211.
https:/​/​doi.org/​10.1103/​PhysRevB.102.064211

[12] G. Biroli and M. Tarzia. Lévy-Rosenzweig-Porter random matrix ensemble. Phys. Rev. B, 103: 104205, Mar 2021. 10.1103/​PhysRevB.103.104205. URL https:/​/​doi.org/​10.1103/​PhysRevB.103.104205.
https:/​/​doi.org/​10.1103/​PhysRevB.103.104205

[13] A. Burin. Localization and chaos in a quantum spin glass model in random longitudinal fields: Mapping to the localization problem in a Bethe lattice with a correlated disorder. Annalen der Physik, 529 (7): 1600292, 2017. 10.1002/​andp.201600292. URL https:/​/​doi.org/​10.1002/​andp.201600292.
https:/​/​doi.org/​10.1002/​andp.201600292

[14] A. L. Burin. Many-body delocalization in a strongly disordered system with long-range interactions: Finite-size scaling. Phys. Rev. B, 91: 094202, 2015. 10.1103/​PhysRevB.91.094202. URL https:/​/​doi.org/​10.1103/​PhysRevB.91.094202.
https:/​/​doi.org/​10.1103/​PhysRevB.91.094202

[15] A. L. Burin and L. A. Maksimov. Localization and delocalization of particles in disordered lattice with tunneling amplitude with $r^{-3}$ decay. JETP Lett., 50: 338, 1989. URL http:/​/​jetpletters.ru/​ps/​1129/​article_17116.shtml.
http:/​/​jetpletters.ru/​ps/​1129/​article_17116.shtml

[16] G. L. Celardo, R. Kaiser, and F. Borgonovi. Shielding and localization in the presence of long-range hopping. Phys. Rev. B, 94: 144206, 2016. 10.1103/​PhysRevB.94.144206. URL https:/​/​doi.org/​10.1103/​PhysRevB.94.144206.
https:/​/​doi.org/​10.1103/​PhysRevB.94.144206

[17] X. Chen, X. Yu, G. Y. Cho, B. K. Clark, and E. Fradkin. Many-body localization transition in Rokhsar-Kivelson-type wave functions. Phys. Rev. B, 92: 214204, Dec 2015. 10.1103/​PhysRevB.92.214204. URL https:/​/​doi.org/​10.1103/​PhysRevB.92.214204.
https:/​/​doi.org/​10.1103/​PhysRevB.92.214204

[18] L. Colmenarez, D. J. Luitz, I. M. Khaymovich, and G. De Tomasi. Subdiffusive thouless time scaling in the anderson model on random regular graphs. Phys. Rev. B, 105: 174207, May 2022. 10.1103/​PhysRevB.105.174207. URL https:/​/​doi.org/​10.1103/​PhysRevB.105.174207.
https:/​/​doi.org/​10.1103/​PhysRevB.105.174207

[19] L. D'Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Advances in Physics, 65 (3): 239–362, 2016. 10.1080/​00018732.2016.1198134. URL http:/​/​dx.doi.org/​10.1080/​00018732.2016.1198134.
https:/​/​doi.org/​10.1080/​00018732.2016.1198134

[20] F. A. B. F. de Moura, A. V. Malyshev, M. L. Lyra, V. A. Malyshev, and F. Dominguez-Adame. Localization properties of a one-dimensional tight-binding model with nonrandom long-range intersite interactions. Phys. Rev. B, 71: 174203, 2005. 10.1103/​PhysRevB.71.174203. URL https:/​/​doi.org/​10.1103/​PhysRevB.71.174203.
https:/​/​doi.org/​10.1103/​PhysRevB.71.174203

[21] G. De Tomasi and I. M. Khaymovich. Multifractality meets entanglement: Relation for nonergodic extended states. Phys. Rev. Lett., 124: 200602, May 2020. 10.1103/​PhysRevLett.124.200602. URL https:/​/​doi.org/​10.1103/​PhysRevLett.124.200602.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.200602

[22] G. De Tomasi and I. M. Khaymovich. Non-Hermitian Rosenzweig-Porter random-matrix ensemble: Obstruction to the fractal phase, 2022. URL https:/​/​arxiv.org/​abs/​2204.00669.
arXiv:2204.00669

[23] G. De Tomasi, S. Bera, A. Scardicchio, and I. M. Khaymovich. Subdiffusion in the Anderson model on the random regular graph. Phys. Rev. B, 101: 100201(R), Mar 2020. 10.1103/​PhysRevB.101.100201. URL https:/​/​doi.org/​10.1103/​PhysRevB.101.100201.
https:/​/​doi.org/​10.1103/​PhysRevB.101.100201

[24] G. De Tomasi, I. M. Khaymovich, F. Pollmann, and S. Warzel. Rare thermal bubbles at the many-body localization transition from the Fock space point of view. Phys. Rev. B, 104: 024202, Jul 2021. 10.1103/​PhysRevB.104.024202. URL https:/​/​doi.org/​10.1103/​PhysRevB.104.024202.
https:/​/​doi.org/​10.1103/​PhysRevB.104.024202

[25] X. Deng, V. E. Kravtsov, G. V. Shlyapnikov, and L. Santos. Duality in power-law localization in disordered one-dimensional systems. Phys. Rev. Lett., 120 (11): 110602, 2018. 10.1103/​PhysRevLett.120.110602. URL https:/​/​doi.org/​10.1103/​PhysRevLett.120.110602.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.110602

[26] Xiaolong Deng, Alexander L. Burin, and Ivan M. Khaymovich. Anisotropy-mediated reentrant localization, 2020. URL https:/​/​arxiv.org/​abs/​2002.00013.
arXiv:2002.00013

[27] J. M. Deutsch. Quantum statistical mechanics in a closed system. Phys. Rev. A, 43: 2046–2049, Feb 1991. 10.1103/​PhysRevA.43.2046. URL https:/​/​doi.org/​10.1103/​PhysRevA.43.2046.
https:/​/​doi.org/​10.1103/​PhysRevA.43.2046

[28] F. Evers and A. D. Mirlin. Anderson transitions. Rev. Mod. Phys, 80: 1355, 2008. 10.1103/​RevModPhys.80.1355. URL https:/​/​doi.org/​10.1103/​RevModPhys.80.1355.
https:/​/​doi.org/​10.1103/​RevModPhys.80.1355

[29] R. Fan, P. Zhang, H. Shen, and H. Zhai. Out-of-time-order correlation for many-body localization. Science Bulletin, 62 (10): 707–711, 2017. ISSN 2095-9273. 10.1016/​j.scib.2017.04.011. URL https:/​/​doi.org/​10.1016/​j.scib.2017.04.011.
https:/​/​doi.org/​10.1016/​j.scib.2017.04.011

[30] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov. Interacting electrons in disordered wires: Anderson localization and low-$t$ transport. Phys. Rev. Lett., 95: 206603, Nov 2005. 10.1103/​PhysRevLett.95.206603. URL https:/​/​doi.org/​10.1103/​PhysRevLett.95.206603.
https:/​/​doi.org/​10.1103/​PhysRevLett.95.206603

[31] M. Haque, P. A. McClarty, and I. M. Khaymovich. Entanglement of midspectrum eigenstates of chaotic many-body systems: Reasons for deviation from random ensembles. Phys. Rev. E, 105: 014109, Jan 2022. 10.1103/​PhysRevE.105.014109. URL https:/​/​doi.org/​10.1103/​PhysRevE.105.014109.
https:/​/​doi.org/​10.1103/​PhysRevE.105.014109

[32] Y. Huang, Y.-L. Zhang, and X. Chen. Out-of-time-ordered correlators in many-body localized systems. Annalen der Physik, 529 (7): 1600318, 2016. 10.1002/​andp.201600318. URL https:/​/​doi.org/​10.1002/​andp.201600318.
https:/​/​doi.org/​10.1002/​andp.201600318

[33] D. A. Huse, R. Nandkishore, and V. Oganesyan. Phenomenology of fully many-body-localized systems. Phys. Rev. B, 90: 174202, Nov 2014. 10.1103/​PhysRevB.90.174202. URL https:/​/​doi.org/​10.1103/​PhysRevB.90.174202.
https:/​/​doi.org/​10.1103/​PhysRevB.90.174202

[34] I. M. Khaymovich and V. E. Kravtsov. Dynamical phases in a ``multifractal'' Rosenzweig-Porter model. SciPost Phys., 11: 45, 2021. 10.21468/​SciPostPhys.11.2.045. URL https:/​/​doi.org/​10.21468/​SciPostPhys.11.2.045.
https:/​/​doi.org/​10.21468/​SciPostPhys.11.2.045

[35] I. M. Khaymovich, V. E. Kravtsov, B. L. Altshuler, and L. B. Ioffe. Fragile ergodic phases in logarithmically-normal Rosenzweig-Porter model. Phys. Rev. Research, 2: 043346, 2020. 10.1103/​PhysRevResearch.2.043346. URL https:/​/​doi.org/​10.1103/​PhysRevResearch.2.043346.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.043346

[36] V. E. Kravtsov, I. M. Khaymovich, E. Cuevas, and M. Amini. A random matrix model with localization and ergodic transitions. New J. Phys., 17: 122002, 2015. 10.1088/​1367-2630/​17/​12/​122002. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​12/​122002

[37] V. E. Kravtsov, I. M. Khaymovich, B. L. Altshuler, and L. B. Ioffe. Localization transition on the random regular graph as an unstable tricritical point in a log-normal rosenzweig-porter random matrix ensemble, 2020. URL https:/​/​arxiv.org/​abs/​2002.02979.
arXiv:2002.02979

[38] A. G. Kutlin and I. M. Khaymovich. Renormalization to localization without a small parameter. SciPost Phys., 8: 49, 2020. 10.21468/​SciPostPhys.8.4.049. URL https:/​/​doi.org/​10.21468/​SciPostPhys.8.4.049.
https:/​/​doi.org/​10.21468/​SciPostPhys.8.4.049

[39] A. G. Kutlin and I. M. Khaymovich. Emergent fractal phase in energy stratified random models. SciPost Phys., 11: 101, 2021. 10.21468/​SciPostPhys.11.6.101. URL https:/​/​doi.org/​10.21468/​SciPostPhys.11.6.101.
https:/​/​doi.org/​10.21468/​SciPostPhys.11.6.101

[40] A. G. Kutlin and I. M. Khaymovich. Multifractal phase in real and energy spaces, 2022. in preparation.

[41] L. S. Levitov. Absence of localization of vibrational modes due to dipole-dipole interaction. Europhys. Lett., 9: 83, 1989. 10.1209/​0295-5075/​9/​1/​015. URL https:/​/​doi.org/​10.1209.
https:/​/​doi.org/​10.1209/​0295-5075/​9/​1/​015

[42] L. S. Levitov. Delocalization of vibrational modes caused by electric dipole interaction. Phys. Rev. Lett., 64: 547, 1990. 10.1103/​PhysRevLett.64.547. URL https:/​/​doi.org/​10.1103/​PhysRevLett.64.547.
https:/​/​doi.org/​10.1103/​PhysRevLett.64.547

[43] D. J. Luitz, N. Laflorencie, and F. Alet. Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B, 91: 081103, Feb 2015. 10.1103/​PhysRevB.91.081103. URL https:/​/​doi.org/​10.1103/​PhysRevB.91.081103.
https:/​/​doi.org/​10.1103/​PhysRevB.91.081103

[44] D. J. Luitz, I. M. Khaymovich, and Y. Bar Lev. Multifractality and its role in anomalous transport in the disordered XXZ spin-chain. SciPost Phys. Core, 2: 6, 2020. 10.21468/​SciPostPhysCore.2.2.006. URL https:/​/​doi.org/​10.21468/​SciPostPhysCore.2.2.006.
https:/​/​doi.org/​10.21468/​SciPostPhysCore.2.2.006

[45] N. Macé, F. Alet, and N. Laflorencie. Multifractal scalings across the many-body localization transition. Phys. Rev. Lett., 123: 180601, Oct 2019. 10.1103/​PhysRevLett.123.180601. URL https:/​/​doi.org/​10.1103/​PhysRevLett.123.180601.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.180601

[46] M. L. Mehta. Random matrices. Elsevier, 2004. 10.1016/​C2009-0-22297-5. URL https:/​/​doi.org/​10.1016/​C2009-0-22297-5.
https:/​/​doi.org/​10.1016/​C2009-0-22297-5

[47] A. D. Mirlin, Y. V. Fyodorov, F.-M. Dittes, J. Quezada, and T. H. Seligman. Transition from localized to extended eigenstates in the ensemble of power-law random banded matrices. Phys. Rev. E, 54: 3221, 1996. 10.1103/​PhysRevE.54.3221. URL https:/​/​doi.org/​10.1103/​PhysRevE.54.3221.
https:/​/​doi.org/​10.1103/​PhysRevE.54.3221

[48] A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz, and D. A. Huse. Avalanches and many-body resonances in many-body localized systems. Phys. Rev. B, 105: 174205, May 2022. 10.1103/​PhysRevB.105.174205. URL https:/​/​doi.org/​10.1103/​PhysRevB.105.174205.
https:/​/​doi.org/​10.1103/​PhysRevB.105.174205

[49] Vedant Motamarri, Alexander S. Gorsky, and Ivan M. Khaymovich. Localization and fractality in disordered russian doll model, 2021. URL https:/​/​arxiv.org/​abs/​2112.05066.
arXiv:2112.05066

[50] P. A. Nosov and I. M. Khaymovich. Robustness of delocalization to the inclusion of soft constraints in long-range random models. Phys. Rev. B, 99: 224208, Jun 2019. 10.1103/​PhysRevB.99.224208. URL https:/​/​doi.org/​10.1103/​PhysRevB.99.224208.
https:/​/​doi.org/​10.1103/​PhysRevB.99.224208

[51] P. A. Nosov, I. M. Khaymovich, and V. E. Kravtsov. Correlation-induced localization. Physical Review B, 99 (10): 104203, 2019. 10.1103/​PhysRevB.99.104203. URL https:/​/​doi.org/​10.1103/​PhysRevB.99.104203.
https:/​/​doi.org/​10.1103/​PhysRevB.99.104203

[52] P. A. Nosov, I. M. Khaymovich, A. Kudlis, and V. E. Kravtsov. Statistics of Green's functions on a disordered Cayley tree and the validity of forward scattering approximation. SciPost Phys., 12: 48, 2022. 10.21468/​SciPostPhys.12.2.048. URL https:/​/​doi.org/​10.21468/​SciPostPhys.12.2.048.
https:/​/​doi.org/​10.21468/​SciPostPhys.12.2.048

[53] V. Oganesyan and D. A. Huse. Localization of interacting fermions at high temperature. Phys. Rev. B, 75: 155111, Apr 2007. 10.1103/​PhysRevB.75.155111. URL https:/​/​doi.org/​10.1103/​PhysRevB.75.155111.
https:/​/​doi.org/​10.1103/​PhysRevB.75.155111

[54] A. Pal and D. A. Huse. Many-body localization phase transition. Phys. Rev. B, 82: 174411, Nov 2010. 10.1103/​PhysRevB.82.174411. URL https:/​/​doi.org/​10.1103/​PhysRevB.82.174411.
https:/​/​doi.org/​10.1103/​PhysRevB.82.174411

[55] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys., 83: 863–883, Aug 2011. 10.1103/​RevModPhys.83.863. URL https:/​/​doi.org/​10.1103/​RevModPhys.83.863.
https:/​/​doi.org/​10.1103/​RevModPhys.83.863

[56] S. Ray, A. Ghosh, and S. Sinha. Drive-induced delocalization in the Aubry-André model. Phys. Rev. E, 97: 010101, Jan 2018. 10.1103/​PhysRevE.97.010101. URL https:/​/​doi.org/​10.1103/​PhysRevE.97.010101.
https:/​/​doi.org/​10.1103/​PhysRevE.97.010101

[57] M. Rigol, V. Dunjko, and M. Olshanii. Thermalization and its mechanism for generic isolated quantum systems. Nature, 452 (7189): 854, apr 2008. 10.1038/​nature06838. URL https:/​/​doi.org/​10.1038/​nature06838.
https:/​/​doi.org/​10.1038/​nature06838

[58] R. Riser and E. Kanzieper. Power spectrum and form factor in random diagonal matrices and integrable billiards. Annals of Physics, 425: 168393, 2021. ISSN 0003-4916. 10.1016/​j.aop.2020.168393. URL https:/​/​doi.org/​10.1016/​j.aop.2020.168393.
https:/​/​doi.org/​10.1016/​j.aop.2020.168393

[59] R. Riser, V. Al. Osipov, and E. Kanzieper. Power spectrum of long eigenlevel sequences in quantum chaotic systems. Phys. Rev. Lett., 118: 204101, May 2017. 10.1103/​PhysRevLett.118.204101. URL https:/​/​doi.org/​10.1103/​PhysRevLett.118.204101.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.204101

[60] R. Riser, V. Al. Osipov, and E. Kanzieper. Nonperturbative theory of power spectrum in complex systems. Annals of Physics, 413: 168065, 2020. ISSN 0003-4916. 10.1016/​j.aop.2019.168065. URL https:/​/​doi.org/​10.1016/​j.aop.2019.168065.
https:/​/​doi.org/​10.1016/​j.aop.2019.168065

[61] N. Rosenzweig and C. E. Porter. "repulsion of energy levels" in complex atomic spectra. Phys. Rev. B, 120: 1698, 1960. 10.1103/​PhysRev.120.1698. URL https:/​/​doi.org/​10.1103/​PhysRev.120.1698.
https:/​/​doi.org/​10.1103/​PhysRev.120.1698

[62] S. Roy, I. M. Khaymovich, A. Das, and R. Moessner. Multifractality without fine-tuning in a Floquet quasiperiodic chain. SciPost Phys., 4: 25, 2018. 10.21468/​SciPostPhys.4.5.025. URL https:/​/​doi.org/​10.21468/​SciPostPhys.4.5.025.
https:/​/​doi.org/​10.21468/​SciPostPhys.4.5.025

[63] M. Sarkar, R. Ghosh, A. Sen, and K. Sengupta. Mobility edge and multifractality in a periodically driven Aubry-André model. Phys. Rev. B, 103: 184309, May 2021. 10.1103/​PhysRevB.103.184309. URL https:/​/​doi.org/​10.1103/​PhysRevB.103.184309.
https:/​/​doi.org/​10.1103/​PhysRevB.103.184309

[64] M. Sarkar, R. Ghosh, A. Sen, and K. Sengupta. Signatures of multifractality in a periodically driven interacting aubry-andré model. Phys. Rev. B, 105: 024301, Jan 2022. 10.1103/​PhysRevB.105.024301. URL https:/​/​doi.org/​10.1103/​PhysRevB.105.024301.
https:/​/​doi.org/​10.1103/​PhysRevB.105.024301

[65] M. Serbyn, Z. Papić, and D. A. Abanin. Local conservation laws and the structure of the many-body localized states. Phys. Rev. Lett., 111: 127201, Sep 2013. 10.1103/​PhysRevLett.111.127201. URL https:/​/​doi.org/​10.1103/​PhysRevLett.111.127201.
https:/​/​doi.org/​10.1103/​PhysRevLett.111.127201

[66] M. Srednicki. Chaos and quantum thermalization. Phys. Rev. E, 50: 888–901, Aug 1994. 10.1103/​PhysRevE.50.888. URL https:/​/​doi.org/​10.1103/​PhysRevE.50.888.
https:/​/​doi.org/​10.1103/​PhysRevE.50.888

[67] M. Srednicki. Thermal fluctuations in quantized chaotic systems. J. Phys. A: Mathematical and General, 29 (4): L75, 1996. 10.1088/​0305-4470/​29/​4/​003. URL https:/​/​doi.org/​10.1088/​0305-4470/​29/​4/​003.
https:/​/​doi.org/​10.1088/​0305-4470/​29/​4/​003

[68] M. Tarzia. Many-body localization transition in Hilbert space. Phys. Rev. B, 102: 014208, Jul 2020. 10.1103/​PhysRevB.102.014208. URL https:/​/​doi.org/​10.1103/​PhysRevB.102.014208.
https:/​/​doi.org/​10.1103/​PhysRevB.102.014208

[69] S. H. Tekur, U. T. Bhosale, and M. S. Santhanam. Higher-order spacing ratios in random matrix theory and complex quantum systems. Phys. Rev. B, 98: 104305, Sep 2018. 10.1103/​PhysRevB.98.104305. URL https:/​/​doi.org/​10.1103/​PhysRevB.98.104305.
https:/​/​doi.org/​10.1103/​PhysRevB.98.104305

[70] K. S. Tikhonov and A. D. Mirlin. Many-body localization transition with power-law interactions: Statistics of eigenstates. Phys. Rev. B, 97: 214205, Jun 2018. 10.1103/​PhysRevB.97.214205. URL https:/​/​doi.org/​10.1103/​PhysRevB.97.214205.
https:/​/​doi.org/​10.1103/​PhysRevB.97.214205

[71] G. Torres-Vargas, R. Fossion, C. Tapia-Ignacio, and J. C. López-Vieyra. Determination of scale invariance in random-matrix spectral fluctuations without unfolding. Phys. Rev. E, 96: 012110, Jul 2017. 10.1103/​PhysRevE.96.012110. URL https:/​/​doi.org/​10.1103/​PhysRevE.96.012110.
https:/​/​doi.org/​10.1103/​PhysRevE.96.012110

[72] G. Torres-Vargas, J. A. Méndez-Bermúdez, J. C. López-Vieyra, and R. Fossion. Crossover in nonstandard random-matrix spectral fluctuations without unfolding. Phys. Rev. E, 98: 022110, Aug 2018. 10.1103/​PhysRevE.98.022110. URL https:/​/​doi.org/​10.1103/​PhysRevE.98.022110.
https:/​/​doi.org/​10.1103/​PhysRevE.98.022110

[73] F. Yonezawa and K. Morigaki. Coherent potential approximation. Basic concepts and applications. Progress of Theoretical Physics Supplement, 53: 1–76, 01 1973. ISSN 0375-9687. 10.1143/​PTPS.53.1. URL https:/​/​doi.org/​10.1143/​PTPS.53.1.
https:/​/​doi.org/​10.1143/​PTPS.53.1

Cited by

[1] Aamna Ahmed, Ajith Ramachandran, and Auditya Sharma, "Flat-band-based multifractality in the all-band-flat diamond chain", arXiv:2205.02859.

[2] M. Tarzia, "Fully localized and partially delocalized states in the tails of Erdös-Rényi graphs in the critical regime", Physical Review B 105 17, 174201 (2022).

[3] Vedant Motamarri, Alexander S. Gorsky, and Ivan M. Khaymovich, "Localization and fractality in disordered Russian Doll model", arXiv:2112.05066.

[4] Adway Kumar Das and Anandamohan Ghosh, "Nonergodic extended states in the β ensemble", Physical Review E 105 5, 054121 (2022).

The above citations are from SAO/NASA ADS (last updated successfully 2022-07-05 09:32:25). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2022-07-05 09:32:23).