Finite-Function-Encoding Quantum States

Paul Appel1,2, Alexander J. Heilman3, Ezekiel W. Wertz3, David W. Lyons3, Marcus Huber1,2, Matej Pivoluska4,5, and Giuseppe Vitagliano1,2

1Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria
2Institute for Quantum Optics and Quantum Information – IQOQI Vienna, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
3Mathematics and Physics, Lebanon Valley College, 101 North College Avenue, Annville, Pennsylvania, 17003, United States of America
4Institute of Computer Science, Masaryk University, Botanická 68a, 60200 Brno, Czech Republic
5Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 11 Karlova Ves, Slovakia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions, i.e., multivariate functions over the ring of integers modulo $d$, and investigate some of their structural properties. We also point out some differences between polynomial and non-polynomial function encoding states: The former can be associated to graphical objects, that we dub tensor-edge hypergraphs (TEH), which are a generalization of hypergraphs with a tensor attached to each hyperedge encoding the coefficients of the different monomials. To complete the framework, we also introduce a notion of finite-function-encoding Pauli (FP) operators, which correspond to elements of what is known as the generalized symmetric group in mathematics. First, using this machinery, we study the stabilizer group associated to FFE states and observe how qudit hypergraph states introduced in Ref. [1] admit stabilizers of a particularly simpler form. Afterwards, we investigate the classification of FFE states under local unitaries (LU), and, after showing the complexity of this problem, we focus on the case of bipartite states and especially on the classification under local FP operations (LFP). We find all LU and LFP classes for two qutrits and two ququarts and study several other special classes, pointing out the relation between maximally entangled FFE states and complex Butson-type Hadamard matrices. Our investigation showcases also the relation between the properties of FFE states, especially their LU classification, and the theory of finite rings over the integers.

Logical functions on binary systems can be conveniently encoded into phases of multi-qubit quantum systems. All such boolean functions are polynomials of finite degree and can thus be visualised as hypergraphs, giving rise to graph and hypergraph states. We explore the question what happens when considering logical functions with d-valued integers as inputs. Encoding those in higher-dimensional quantum systems gives rise to a rich family of states with interesting properties.

► BibTeX data

► References

[1] F. E. S. Steinhoff, C. Ritz, N. I. Miklin, and O. Gühne. Qudit hypergraph states. Physical Review A, 95 (5): 052340, May 2017. 10.1103/​PhysRevA.95.052340.
https:/​/​doi.org/​10.1103/​PhysRevA.95.052340

[2] D. Bruß and C. Macchiavello. Optimal Eavesdropping in Cryptography with Three-Dimensional Quantum States. Physical Review Letters, 88 (12): 127901, March 2002. 10.1103/​PhysRevLett.88.127901.
https:/​/​doi.org/​10.1103/​PhysRevLett.88.127901

[3] Nicolas J. Cerf, Mohamed Bourennane, Anders Karlsson, and Nicolas Gisin. Security of Quantum Key Distribution Using d-level systems. Physical Review Letters, 88 (12): 127902, March 2002. 10.1103/​PhysRevLett.88.127902.
https:/​/​doi.org/​10.1103/​PhysRevLett.88.127902

[4] M. Huber and M. Pawlowski. Weak randomness in device independent quantum key distribution and the advantage of using high dimensional entanglement. Physical Review A, 88: 032309, 2013. 10.1103/​PhysRevA.88.032309.
https:/​/​doi.org/​10.1103/​PhysRevA.88.032309

[5] Daniele Cozzolino, Beatrice Da Lio, Davide Bacco, and Leif Katsuo Oxenløwe. High-dimensional quantum communication: Benefits, progress, and future challenges. Advanced Quantum Technologies, 2 (12): 1900038, 2019. 10.1002/​qute.201900038.
https:/​/​doi.org/​10.1002/​qute.201900038

[6] Nurul T Islam, Charles Ci Wen Lim, Clinton Cahall, Jungsang Kim, and Daniel J Gauthier. Provably secure and high-rate quantum key distribution with time-bin qudits. Science advances, 3 (11): e1701491, 2017. 10.1126/​sciadv.1701491.
https:/​/​doi.org/​10.1126/​sciadv.1701491

[7] Mirdit Doda, Marcus Huber, Gláucia Murta, Matej Pivoluska, Martin Plesch, and Chrysoula Vlachou. Quantum key distribution overcoming extreme noise: Simultaneous subspace coding using high-dimensional entanglement. Phys. Rev. Applied, 15: 034003, Mar 2021. 10.1103/​PhysRevApplied.15.034003.
https:/​/​doi.org/​10.1103/​PhysRevApplied.15.034003

[8] Xiao-Min Hu, Chao Zhang, Yu Guo, Fang-Xiang Wang, Wen-Bo Xing, Cen-Xiao Huang, Bi-Heng Liu, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, Xiaoqin Gao, Matej Pivoluska, and Marcus Huber. Pathways for entanglement-based quantum communication in the face of high noise. Phys. Rev. Lett., 127: 110505, Sep 2021. 10.1103/​PhysRevLett.127.110505.
https:/​/​doi.org/​10.1103/​PhysRevLett.127.110505

[9] Yuchen Wang, Zixuan Hu, Barry C. Sanders, and Sabre Kais. Qudits and high-dimensional quantum computing. Frontiers in Physics, 8: 479, August 2020. 10.3389/​fphy.2020.589504.
https:/​/​doi.org/​10.3389/​fphy.2020.589504

[10] Fern H. E. Watson, Hussain Anwar, and Dan E. Browne. Fast fault-tolerant decoder for qubit and qudit surface codes. Physical Review A, 92 (3): 032309, September 2015. 10.1103/​PhysRevA.92.032309.
https:/​/​doi.org/​10.1103/​PhysRevA.92.032309

[11] Earl T. Campbell, Hussain Anwar, and Dan E. Browne. Magic-State Distillation in All Prime Dimensions Using Quantum Reed-Muller Codes. Physical Review X, 2 (4): 041021, December 2012. 10.1103/​PhysRevX.2.041021.
https:/​/​doi.org/​10.1103/​PhysRevX.2.041021

[12] Earl T. Campbell. Enhanced Fault-Tolerant Quantum Computing in $d$-Level Systems. Physical Review Letters, 113 (23): 230501, December 2014. 10.1103/​PhysRevLett.113.230501.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.230501

[13] D. Gross, S. T. Flammia, and J. Eisert. Most quantum states are too entangled to be useful as computational resources. Physical Review Letters, 102 (19): 190501, May 2009. 10.1103/​physrevlett.102.190501.
https:/​/​doi.org/​10.1103/​physrevlett.102.190501

[14] Robert Raussendorf, Daniel E Browne, and Hans J Briegel. Measurement-based quantum computation on cluster states. Physical review A, 68 (2): 022312, 2003. 10.1103/​PhysRevA.68.022312.
https:/​/​doi.org/​10.1103/​PhysRevA.68.022312

[15] D. Bruß and C. Macchiavello. Multipartite entanglement in quantum algorithms. Physical Review A, 83: 052313, May 2011. 10.1103/​PhysRevA.83.052313.
https:/​/​doi.org/​10.1103/​PhysRevA.83.052313

[16] M. Hein, J. Eisert, and H. J. Briegel. Multiparty entanglement in graph states. Physical Review A, 69 (6): 062311, June 2004a. 10.1103/​PhysRevA.69.062311.
https:/​/​doi.org/​10.1103/​PhysRevA.69.062311

[17] Zahra Raissi, Adam Teixidó, Christian Gogolin, and Antonio Acín. Constructions of $k$-uniform and absolutely maximally entangled states beyond maximum distance codes. Phys. Rev. Research, 2: 033411, Sep 2020. 10.1103/​PhysRevResearch.2.033411.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033411

[18] M Rossi, M Huber, D Bruß, and C Macchiavello. Quantum hypergraph states. New Journal of Physics, 15 (11): 113022, nov 2013. 10.1088/​1367-2630/​15/​11/​113022.
https:/​/​doi.org/​10.1088/​1367-2630/​15/​11/​113022

[19] Mariami Gachechiladze, Costantino Budroni, and Otfried Gühne. Extreme violation of local realism in quantum hypergraph states. Physical Review Letters, 116: 070401, February 2016. 10.1103/​PhysRevLett.116.070401.
https:/​/​doi.org/​10.1103/​PhysRevLett.116.070401

[20] J. Miller and A. Miyake. Hierarchy of universal entanglement in 2D measurement-based quantum computation. npj Quantum Information, 2: 16036, November 2016. 10.1038/​npjqi.2016.36.
https:/​/​doi.org/​10.1038/​npjqi.2016.36

[21] Mariami Gachechiladze, Otfried Gühne, and Akimasa Miyake. Changing the circuit-depth complexity of measurement-based quantum computation with hypergraph states. Phys. Rev. A, 99: 052304, May 2019. 10.1103/​PhysRevA.99.052304.
https:/​/​doi.org/​10.1103/​PhysRevA.99.052304

[22] Yuki Takeuchi, Tomoyuki Morimae, and Masahito Hayashi. Quantum computational universality of hypergraph states with pauli-x and z basis measurements. Scientific Reports, 9 (1): 13585, Sep 2019. ISSN 2045-2322. 10.1038/​s41598-019-49968-3.
https:/​/​doi.org/​10.1038/​s41598-019-49968-3

[23] Ri Qu, Juan Wang, Zong-shang Li, and Yan-ru Bao. Encoding hypergraphs into quantum states. Physical Review A, 87: 022311, February 2013. 10.1103/​PhysRevA.87.022311.
https:/​/​doi.org/​10.1103/​PhysRevA.87.022311

[24] Supriyo Dutta. A boolean functions theoretic approach to quantum hypergraph states and entanglement. November 2018. 10.48550/​arXiv.1811.00308.
https:/​/​doi.org/​10.48550/​arXiv.1811.00308

[25] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439 (1907): 553–558, 1992. 10.1098/​rspa.1992.0167.
https:/​/​doi.org/​10.1098/​rspa.1992.0167

[26] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC '96, page 212–219, New York, NY, USA, 1996. Association for Computing Machinery. ISBN 0897917855. 10.1145/​237814.237866.
https:/​/​doi.org/​10.1145/​237814.237866

[27] Anthony Martin, Thiago Guerreiro, Alexey Tiranov, Sébastien Designolle, Florian Fröwis, Nicolas Brunner, Marcus Huber, and Nicolas Gisin. Quantifying photonic high-dimensional entanglement. Physical Review Letters, 118: 110501, March 2017. 10.1103/​PhysRevLett.118.110501.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.110501

[28] Sebastian Ecker, Frédéric Bouchard, Lukas Bulla, Florian Brandt, Oskar Kohout, Fabian Steinlechner, Robert Fickler, Mehul Malik, Yelena Guryanova, Rupert Ursin, and Marcus Huber. Overcoming noise in entanglement distribution. Physical Review X, 9 (4): 041042, Nov 2019. ISSN 2160-3308. 10.1103/​physrevx.9.041042.
https:/​/​doi.org/​10.1103/​physrevx.9.041042

[29] Benjamin P. Lanyon, Marco Barbieri, Marcelo P. Almeida, Thomas Jennewein, Timothy C. Ralph, Kevin J. Resch, Geoff J. Pryde, Jeremy L. O'Brien, Alexei Gilchrist, and Andrew G. White. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nature Physics, 5: 134–140, February 2009. 10.1038/​nphys1150.
https:/​/​doi.org/​10.1038/​nphys1150

[30] Luke E. Heyfron and Earl Campbell. A quantum compiler for qudits of prime dimension greater than 3. arXiv:1902.05634 [quant-ph], February 2019. 10.48550/​arXiv.1902.05634.
https:/​/​doi.org/​10.48550/​arXiv.1902.05634
arXiv:1902.05634

[31] Wojciek Tadej and Karol Zyczkowski. A concise guide to complex Hadamard matrices. Open Systems & Information Dynamics, 13: 133–177, 2006. 10.1007/​s11080-006-8220-2.
https:/​/​doi.org/​10.1007/​s11080-006-8220-2

[32] D. H. Zhang, H. Fan, and D. L. Zhou. Stabilizer dimension of graph states. Physical Review A, 79 (4): 042318, April 2009. 10.1103/​PhysRevA.79.042318.
https:/​/​doi.org/​10.1103/​PhysRevA.79.042318

[33] David W. Lyons, Daniel J. Upchurch, Scott N. Walck, and Chase D. Yetter. Local unitary symmetries of hypergraph states. Journal of Physics A: Mathematical and Theoretical, 48 (9): 095301, February 2015. 10.1088/​1751-8113/​48/​9/​095301.
https:/​/​doi.org/​10.1088/​1751-8113/​48/​9/​095301

[34] David Singmaster. On polynomial functions (mod m). Journal of Number Theory, 6 (5): 345–352, October 1974. ISSN 0022-314X. 10.1016/​0022-314X(74)90031-6.
https:/​/​doi.org/​10.1016/​0022-314X(74)90031-6

[35] Svetlana N. Selezneva. On the number of functions of k-valued logic which are polynomials modulo composite k. Discrete Mathematics and Applications, 27 (1): 7–14, January 2017. ISSN 0924-9265, 1569-3929. 10.1515/​dma-2017-0002.
https:/​/​doi.org/​10.1515/​dma-2017-0002

[36] O. Gühne, M. Cuquet, F. E. S. Steinhoff, T. Moroder, M. Rossi, D. Bruß, B. Kraus, and C. Macchiavello. Entanglement and nonclassical properties of hypergraph states. Journal of Physics A: Mathematical and Theoretical, 47 (33): 335303, 2014. 10.1088/​1751-8113/​47/​33/​335303.
https:/​/​doi.org/​10.1088/​1751-8113/​47/​33/​335303

[37] Shiang Yong Looi, Li Yu, Vlad Gheorghiu, and Robert B Griffiths. Quantum-error-correcting codes using qudit graph states. Physical Review A, 78 (4): 042303, 2008. 10.1103/​PhysRevA.78.042303.
https:/​/​doi.org/​10.1103/​PhysRevA.78.042303

[38] Adrian Keet, Ben Fortescue, Damian Markham, and Barry C Sanders. Quantum secret sharing with qudit graph states. Physical Review A, 82 (6): 062315, 2010. 10.1103/​PhysRevA.82.062315.
https:/​/​doi.org/​10.1103/​PhysRevA.82.062315

[39] Marc Hein, Jens Eisert, and Hans J Briegel. Multiparty entanglement in graph states. Physical Review A, 69 (6): 062311, 2004b. 10.1103/​PhysRevA.69.062311.
https:/​/​doi.org/​10.1103/​PhysRevA.69.062311

[40] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, New York, NY, USA, tenth edition, 2011. ISBN 1-107-00217-6 978-1-107-00217-3.

[41] C. Eltschka and J. Siewert. Quantifying entanglement resources. Journal of Physics A: Mathematical and Theoretical, 47: 424005, 2014. 10.1088/​1751-8113/​47/​42/​424005.
https:/​/​doi.org/​10.1088/​1751-8113/​47/​42/​424005

[42] Eric Chitambar, Debbie Leung, Laura Mančinska, Maris Ozols, and Andreas Winter. Everything you always wanted to know about locc (but were afraid to ask). Communications in Mathematical Physics, 328 (1): 303–326, Mar 2014. ISSN 1432-0916. 10.1007/​s00220-014-1953-9.
https:/​/​doi.org/​10.1007/​s00220-014-1953-9

[43] D. Gross and M. Van den Nest. The lu-lc conjecture, diagonal local operations and quadratic forms over gf(2). Quantum Inf. Comput. 8, 263 (2008), 2007. 10.48550/​arXiv.0707.4000.
https:/​/​doi.org/​10.48550/​arXiv.0707.4000

[44] Zhengfeng Ji, Jianxin Chen, Zhaohui Wei, and Mingsheng Ying. The lu-lc conjecture is false. Quantum Inf. Comput. 10, 97 (2010), 2008. 10.48550/​arXiv.0709.1266.
https:/​/​doi.org/​10.48550/​arXiv.0709.1266

[45] Maarten Van den Nest, Jeroen Dehaene, and Bart De Moor. Local unitary versus local clifford equivalence of stabilizer states. Physical Review A, 71 (6): 062323, Jun 2005. ISSN 1094-1622. 10.1103/​physreva.71.062323.
https:/​/​doi.org/​10.1103/​physreva.71.062323

[46] Dardo Goyeneche and Karol Życzkowski. Genuinely multipartite entangled states and orthogonal arrays. Physical Review A, 90 (2): 022316, Aug 2014. ISSN 1094-1622. 10.1103/​physreva.90.022316.
https:/​/​doi.org/​10.1103/​physreva.90.022316

[47] Dardo Goyeneche, Daniel Alsina, José I. Latorre, Arnau Riera, and Karol Życzkowski. Absolutely maximally entangled states, combinatorial designs, and multiunitary matrices. Phys. Rev. A, 92: 032316, Sep 2015. 10.1103/​PhysRevA.92.032316.
https:/​/​doi.org/​10.1103/​PhysRevA.92.032316

[48] Dardo Goyeneche, Zahra Raissi, Sara Di Martino, and Karol Życzkowski. Entanglement and quantum combinatorial designs. Phys. Rev. A, 97: 062326, Jun 2018. 10.1103/​PhysRevA.97.062326.
https:/​/​doi.org/​10.1103/​PhysRevA.97.062326

[49] Felix Huber, Christopher Eltschka, Jens Siewert, and Otfried Gühne. Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity. Journal of Physics A: Mathematical and Theoretical, 51 (17): 175301, mar 2018. 10.1088/​1751-8121/​aaade5.
https:/​/​doi.org/​10.1088/​1751-8121/​aaade5

[50] A. J. Scott. Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Physical Review A, 69 (5): 052330, May 2004. ISSN 1094-1622. 10.1103/​physreva.69.052330.
https:/​/​doi.org/​10.1103/​physreva.69.052330

[51] Felix Huber, Otfried Gühne, and Jens Siewert. Absolutely maximally entangled states of seven qubits do not exist. Phys. Rev. Lett., 118: 200502, May 2017. 10.1103/​PhysRevLett.118.200502.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.200502

[52] Wojciek Tadej. Permutation equivalence classes of Kronecker Products of unitary Fourier matrices. Linear Algebra and Its Applications, 418: 719–736, 2006. 10.1016/​j.laa.2006.03.004.
https:/​/​doi.org/​10.1016/​j.laa.2006.03.004

[53] P. H. J. Lampio, P. Östergård, and F. Szöllősi. Orderly generation of butson hadamard matrices. Math. Comp., 89: 313–331, 2020. 10.1090/​mcom/​3453.
https:/​/​doi.org/​10.1090/​mcom/​3453

[54] Uffe Haagerup. Orthogonal maximal abelian *-subalgebras of the $n\times n$ matrices and cyclic n-roots. Operator Algebras and Quantum Field Theory (Rome), pages 296 – 322, 1996. URL http:/​/​citeseerx.ist.psu.edu/​viewdoc/​summary?doi=10.1.1.35.8457.
http:/​/​citeseerx.ist.psu.edu/​viewdoc/​summary?doi=10.1.1.35.8457

[55] Terence Tao. Fuglede's conjecture is false in 5 and higher dimensions. Math. Res. Letters, 11: 251–258, 2004. 10.4310/​MRL.2004.v11.n2.a8.
https:/​/​doi.org/​10.4310/​MRL.2004.v11.n2.a8

[56] David W. Lyons and Scott N. Walck. Minimum orbit dimension for local unitary action on n-qubit pure states. Journal of Mathematical Physics, 46: 102106, 2005. 10.1063/​1.2048327.
https:/​/​doi.org/​10.1063/​1.2048327

[57] Ferenc Szöllősi. Complex hadamard matrices of order 6: a four-parameter family. Journal of the London Mathematical Society, 85 (3): 616–632, Mar 2012. ISSN 0024-6107. 10.1112/​jlms/​jdr052.
https:/​/​doi.org/​10.1112/​jlms/​jdr052

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-05-28 21:35:33). On SAO/NASA ADS no data on citing works was found (last attempt 2022-05-28 21:35:33).