Few-particle scattering from localized quantum systems in spatially structured bosonic baths

Rahul Trivedi1, Kevin Fischer2, Shanhui Fan2, and Jelena Vuckovic2

1Max Planck Institut für Quantenoptik, Garching bei München, 85748, Germany.
2Stanford University, Stanford, CA, 94305, USA.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Understanding dynamics of localized quantum systems embedded in engineered bosonic environments is a central problem in quantum optics and open quantum system theory. We present a formalism for studying few-particle scattering from a localized quantum system interacting with an bosonic bath described by an inhomogeneous wave-equation. In particular, we provide exact relationships between the quantum scattering matrix of this interacting system and frequency domain solutions of the inhomogeneous wave-equation thus providing access to the spatial distribution of the scattered few-particle wave-packet. The formalism developed in this paper paves the way to computationally understanding the impact of structured media on the scattering properties of localized quantum systems embedded in them without simplifying assumptions on the physics of the structured media.

► BibTeX data

► References

[1] 4 P. Lodahl, S. Mahmoodian, and S. Stobbe, ``Interfacing single photons and single quantum dots with photonic nanostructures,'' Reviews of Modern Physics, vol. 87, no. 2, p. 347, 2015. [Online]. Available: https:/​/​doi.org/​10.1103/​RevModPhys.87.347 0pt.

[2] 4 X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling et al., ``On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,'' Physical Review Letters, vol. 116, no. 2, p. 020401, 2016. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevLett.116.020401 0pt.

[3] 4 P. Michler, Ed., Quantum Dots for Quantum Information Technologies. Springer, 2017. [Online]. Available: https:/​/​doi.org/​10.1007/​978-3-319-56378-7 0pt.

[4] 4 P. Senellart, G. Solomon, and A. White, ``High-performance semiconductor quantum-dot single-photon sources,'' Nature Nanotechnology, vol. 12, no. 11, pp. nnano–2017, 2017. [Online]. Available: https:/​/​doi.org/​10.1038/​nnano.2017.218 0pt.

[5] 4 J. L. Zhang, S. Sun, M. J. Burek, C. Dory, Y.-K. Tzeng, K. A. Fischer, Y. Kelaita, K. G. Lagoudakis, M. Radulaski, Z.-X. Shen et al., ``Strongly cavity-enhanced spontaneous emission from silicon-vacancy centers in diamond,'' Nano letters, vol. 18, no. 2, pp. 1360–1365, 2018. [Online]. Available: https:/​/​doi.org/​10.1021/​acs.nanolett.7b05075 0pt.

[6] 4 P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, ``Linear optical quantum computing with photonic qubits,'' Reviews of Modern Physics, vol. 79, no. 1, p. 135, 2007. [Online]. Available: https:/​/​doi.org/​10.1103/​RevModPhys.79.135 0pt.

[7] 4 J. L. O'brien, A. Furusawa, and J. Vučković, ``Photonic quantum technologies,'' Nature Photonics, vol. 3, no. 12, p. 687, 2009. [Online]. Available: https:/​/​doi.org/​10.1038/​nphoton.2009.229 0pt.

[8] 4 D. Roy, C. M. Wilson, and O. Firstenberg, ``Colloquium: Strongly interacting photons in one-dimensional continuum,'' Reviews of Modern Physics, vol. 89, no. 2, p. 021001, 2017. [Online]. Available: https:/​/​doi.org/​10.1103/​RevModPhys.89.021001 0pt.

[9] 4 A. Reiserer and G. Rempe, ``Cavity-based quantum networks with single atoms and optical photons,'' Reviews of Modern Physics, vol. 87, no. 4, p. 1379, 2015. [Online]. Available: https:/​/​doi.org/​10.1103/​RevModPhys.87.1379 0pt.

[10] 4 L.-M. Duan and C. Monroe, ``Colloquium: Quantum networks with trapped ions,'' Reviews of Modern Physics, vol. 82, no. 2, p. 1209, 2010. [Online]. Available: https:/​/​doi.org/​10.1103/​RevModPhys.82.1209 0pt.

[11] 4 N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, ``Quantum repeaters based on atomic ensembles and linear optics,'' Reviews of Modern Physics, vol. 83, no. 1, p. 33, 2011. [Online]. Available: https:/​/​doi.org/​10.1103/​RevModPhys.83.33 0pt.

[12] 4 K. Nemoto, M. Trupke, S. J. Devitt, A. M. Stephens, B. Scharfenberger, K. Buczak, T. Nöbauer, M. S. Everitt, J. Schmiedmayer, and W. J. Munro, ``Photonic architecture for scalable quantum information processing in diamond,'' Physical Review X, vol. 4, no. 3, p. 031022, 2014. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevX.4.031022 0pt.

[13] 4 D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, ``Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,'' Physical review letters, vol. 95, no. 1, p. 013904, 2005. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevLett.95.013904 0pt.

[14] 4 R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo et al., ``Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide,'' Optica, vol. 4, no. 2, pp. 178–184, 2017. [Online]. Available: https:/​/​doi.org/​10.1364/​OPTICA.4.000178 0pt.

[15] 4 M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, ``Efficient source of single photons: a single quantum dot in a micropost microcavity,'' Physical review letters, vol. 89, no. 23, p. 233602, 2002. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevLett.89.233602 0pt.

[16] 4 Y.-M. He, Y. He, Y.-J. Wei, D. Wu, M. Atatüre, C. Schneider, S. Höfling, M. Kamp, C.-Y. Lu, and J.-W. Pan, ``On-demand semiconductor single-photon source with near-unity indistinguishability,'' Nature Nanotechnology, vol. 8, no. 3, pp. 213–217, 2013. [Online]. Available: https:/​/​doi.org/​10.1038/​nnano.2012.262 0pt.

[17] 4 K. A. Fischer, L. Hanschke, J. Wierzbowski, T. Simmet, C. Dory, J. J. Finley, J. Vučković, and K. Müller, ``Signatures of two-photon pulses from a quantum two-level system,'' Nature Physics, vol. 13, no. 7, pp. 649–654, 2017. [Online]. Available: https:/​/​doi.org/​10.1038/​nphys4052 0pt.

[18] 4 L. Hanschke, K. A. Fischer, S. Appel, D. Lukin, J. Wierzbowski, S. Sun, R. Trivedi, J. Vučković, J. J. Finley, and K. Müller, ``Quantum dot single-photon sources with ultra-low multi-photon probability,'' npj Quantum Information, vol. 4, no. 1, pp. 1–6, 2018. [Online]. Available: https:/​/​doi.org/​10.1038/​s41534-018-0092-0 0pt.

[19] 4 M. Metcalfe, S. M. Carr, A. Muller, G. S. Solomon, and J. Lawall, ``Resolved sideband emission of inas/​gaas quantum dots strained by surface acoustic waves,'' Physical review letters, vol. 105, no. 3, p. 037401, 2010. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevLett.105.037401 0pt.

[20] 4 K. C. Miao, A. Bourassa, C. P. Anderson, S. J. Whiteley, A. L. Crook, S. L. Bayliss, G. Wolfowicz, G. Thiering, P. Udvarhelyi, V. Ivády et al., ``Electrically driven optical interferometry with spins in silicon carbide,'' Science Advances, vol. 5, no. 11, p. eaay0527, 2019. [Online]. Available: https:/​/​doi.org/​10.1126/​sciadv.aay0527 0pt.

[21] 4 D. M. Lukin, A. D. White, R. Trivedi, M. A. Guidry, N. Morioka, C. Babin, Ö. O. Soykal, J. Ul-Hassan, N. T. Son, T. Ohshima et al., ``Spectrally reconfigurable quantum emitters enabled by optimized fast modulation,'' npj Quantum Information, vol. 6, no. 1, pp. 1–9, 2020. [Online]. Available: https:/​/​doi.org/​10.1038/​s41534-020-00310-0 0pt.

[22] 4 H. Wang, Y.-M. He, T.-H. Chung, H. Hu, Y. Yu, S. Chen, X. Ding, M.-C. Chen, J. Qin, X. Yang et al., ``Towards optimal single-photon sources from polarized microcavities,'' Nature Photonics, vol. 13, no. 11, pp. 770–775, 2019. [Online]. Available: https:/​/​doi.org/​10.1038/​s41566-019-0494-3 0pt.

[23] 4 X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, ``All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,'' Optics express, vol. 12, no. 16, pp. 3737–3744, 2004. [Online]. Available: https:/​/​doi.org/​10.1364/​OPEX.12.003737 0pt.

[24] 4 G. Harder, V. Ansari, B. Brecht, T. Dirmeier, C. Marquardt, and C. Silberhorn, ``An optimized photon pair source for quantum circuits,'' Optics express, vol. 21, no. 12, pp. 13 975–13 985, 2013. [Online]. Available: https:/​/​doi.org/​10.1364/​OE.21.013975 0pt.

[25] 4 H. Pichler and P. Zoller, ``Photonic circuits with time delays and quantum feedback,'' Physical review letters, vol. 116, no. 9, p. 093601, 2016. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevLett.116.093601 0pt.

[26] 4 S. Xu and S. Fan, ``Generate tensor network state by sequential single-photon scattering in waveguide qed systems,'' APL Photonics, vol. 3, no. 11, p. 116102, 2018. [Online]. Available: https:/​/​doi.org/​10.1063/​1.5044248 0pt.

[27] 4 H. Carmichael, An open systems approach to quantum optics: lectures presented at the Université Libre de Bruxelles, October 28 to November 4, 1991. Springer Science & Business Media, 2009, vol. 18. [Online]. Available: https:/​/​doi.org/​10.1007/​978-3-540-47620-7 0pt.

[28] 4 C. Gardiner and P. Zoller, Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics. Springer Science & Business Media, 2004, vol. 56. [Online]. Available: https:/​/​doi.org/​10.1007/​9783540223016 0pt.

[29] 4 A. Asenjo-Garcia, J. Hood, D. Chang, and H. Kimble, ``Atom-light interactions in quasi-one-dimensional nanostructures: A green's-function perspective,'' Physical Review A, vol. 95, no. 3, p. 033818, 2017. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevA.95.033818 0pt.

[30] 4 H. T. Dung, L. Knöll, and D.-G. Welsch, ``Resonant dipole-dipole interaction in the presence of dispersing and absorbing surroundings,'' Physical Review A, vol. 66, no. 6, p. 063810, 2002. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevA.66.063810 0pt.

[31] 4 A. H. Kiilerich and K. Mølmer, ``Input-output theory with quantum pulses,'' Physical review letters, vol. 123, no. 12, p. 123604, 2019. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevLett.123.123604 0pt.

[32] J. R. Taylor, Scattering theory: the quantum theory of nonrelativistic collisions. Courier Corporation, 2006.

[33] 4 S. Fan, Ş. E. Kocabaş, and J.-T. Shen, ``Input-output formalism for few-photon transport in one-dimensional nanophotonic waveguides coupled to a qubit,'' Physical Review A, vol. 82, no. 6, p. 063821, 2010. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevA.82.063821 0pt.

[34] 4 S. Xu, E. Rephaeli, and S. Fan, ``Analytic properties of two-photon scattering matrix in integrated quantum systems determined by the cluster decomposition principle,'' Physical review letters, vol. 111, no. 22, p. 223602, 2013. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevLett.111.223602 0pt.

[35] 4 S. Xu and S. Fan, ``Input-output formalism for few-photon transport: A systematic treatment beyond two photons,'' Physical Review A, vol. 91, no. 4, p. 043845, 2015. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevA.91.043845 0pt.

[36] 4 R. Trivedi, K. Fischer, S. Xu, S. Fan, and J. Vuckovic, ``Few-photon scattering and emission from low-dimensional quantum systems,'' Physical Review B, vol. 98, no. 14, p. 144112, 2018. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevB.98.144112 0pt.

[37] R. Trivedi, D. Malz, S. Sun, S. Fan, and J. Vučković, ``Optimal two-photon excitation of bound states in non-markovian waveguide qed,'' Physical Review A, vol. 104, no. 1, p. 013705, 2021. https:/​/​doi.org/​10.1103/​PhysRevA.104.013705.

[38] 4 K. A. Fischer, R. Trivedi, V. Ramasesh, I. Siddiqi, and J. Vučković, ``Scattering into one-dimensional waveguides from a coherently-driven quantum-optical system,'' Quantum, vol. 2, p. 69, 2018. [Online]. Available: https:/​/​doi.org/​10.22331/​q-2018-05-28-69 0pt.

[39] 4 T. Shi, D. E. Chang, and J. I. Cirac, ``Multiphoton-scattering theory and generalized master equations,'' Physical Review A, vol. 92, no. 5, p. 053834, 2015. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevA.92.053834 0pt.

[40] 4 T. Caneva, M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac, and D. E. Chang, ``Quantum dynamics of propagating photons with strong interactions: a generalized input–output formalism,'' New Journal of Physics, vol. 17, no. 11, p. 113001, 2015. [Online]. Available: http:/​/​dx.doi.org/​10.1088/​1367-2630/​17/​11/​113001 0pt.

[41] 4 S. Haroche and D. Kleppner, ``Cavity quantum electrodynamics,'' Phys. Today, vol. 42, no. 1, pp. 24–30, 1989. [Online]. Available: http:/​/​dx.doi.org/​10.1063/​1.881201 0pt.

[42] 4 R. Trivedi, M. Radulaski, K. A. Fischer, S. Fan, and J. Vučković, ``Photon blockade in weakly driven cavity quantum electrodynamics systems with many emitters,'' Physical review letters, vol. 122, no. 24, p. 243602, 2019. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevLett.122.243602 0pt.

[43] 4 T. Shi, S. Fan et al., ``Two-photon transport through a waveguide coupling to a whispering-gallery resonator containing an atom and photon-blockade effect,'' Physical Review A, vol. 87, no. 6, p. 063818, 2013. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevA.87.063818 0pt.

[44] 4 J. Liu, M. Zhou, and Z. Yu, ``Quantum scattering theory of a single-photon fock state in three-dimensional spaces,'' Optics letters, vol. 41, no. 18, pp. 4166–4169, 2016. [Online]. Available: https:/​/​doi.org/​10.1364/​OL.41.004166 0pt.

[45] 4 M. Orenstein, S. Fan et al., ``Two-level quantum system as a macroscopic scatterer for ultraconfined two-dimensional photonic modes,'' Physical Review A, vol. 102, no. 1, p. 013717, 2020. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevA.102.013717 0pt.

[46] 4 E. K. Miller, ``A selective survey of computational electromagnetics,'' IEEE Transactions on Antennas and Propagation, vol. 36, no. 9, pp. 1281–1305, 1988. [Online]. Available: https:/​/​doi.org/​10.1109/​8.8607 0pt.

[47] 4 S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vucković, and A. W. Rodriguez, ``Inverse design in nanophotonics,'' Nature Photonics, vol. 12, no. 11, pp. 659–670, 2018. [Online]. Available: https:/​/​doi.org/​10.1038/​s41566-018-0246-9 0pt.

[48] 4 H. T. Dung, L. Knöll, and D.-G. Welsch, ``Three-dimensional quantization of the electromagnetic field in dispersive and absorbing inhomogeneous dielectrics,'' Physical Review A, vol. 57, no. 5, p. 3931, 1998. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevA.57.3931 0pt.

[49] 4 T. Gruner and D.-G. Welsch, ``Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous kramers-kronig dielectrics,'' Physical Review A, vol. 53, no. 3, p. 1818, 1996. [Online]. Available: https:/​/​doi.org/​10.1103/​PhysRevA.53.1818 0pt.

[50] 4 S. Weinberg, The quantum theory of fields. Cambridge university press, 1995, vol. 2. [Online]. Available: https:/​/​doi.org/​10.1017/​CBO9781139644167 0pt.

[51] 4 H.-P. Breuer and F. Petruccione, The theory of open quantum systems. Oxford University Press on Demand, 2002. [Online]. Available: https:/​/​doi.org/​10.1093/​acprof:oso/​9780199213900.001.0001 0pt.

[52] 4 Y. Wang and I. Khoo, ``On the wigner-weisskopf approximation in quantum optics,'' Optics Communications, vol. 11, no. 4, pp. 323–326, 1974. [Online]. Available: https:/​/​doi.org/​10.1016/​0030-4018(74)90227-2 0pt.

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-05-28 18:33:11). On SAO/NASA ADS no data on citing works was found (last attempt 2022-05-28 18:33:12).