Extraction of autonomous quantum coherences

Artur Slobodeniuk1,2, Tomáš Novotný2, and Radim Filip1

1Department of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
2Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, CZ-121 16 Prague, Czech Republic

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum coherence is an essential resource to gain advantage over classical physics and technology. Recently, it has been proposed that a low-temperature environment can induce quantum coherence of a spin without an external coherent pump. We address a critical question if such coherence is extractable by a weak coupling to an output system dynamically affecting back the spin-environment coupling. Describing the entire mechanism, we prove that such extraction is generically possible for output spins (also oscillators or fields) and, as well, in a fermionic analogue of such a process. We compare the internal spin coherence and output coherence over temperature and characteristic frequencies. The proposed optimal coherence extraction opens paths for the upcoming experimental tests with atomic and solid-state systems.

Quantum coherence is the essential resource of quantum technology. Its appearance without an external drive, purely from engineered coupling with a cold bath, has been recently proposed and discussed. One of the risky proof-of-principle points that remained was if such coherence is extractable by a simultaneously present coupling to an external system, and a back action from the extraction will not spoil this stimulating effect. We solved that problem for spin-boson and fermion-boson models and showed positively that such autonomous coherence is extractable. It opens further the door to its experimental investigation and stimulates ongoing research to make quantum technology more autonomous.

► BibTeX data

► References

[1] Alexander Streltsov, Gerardo Adesso, and Martin B. Plenio. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017).

[2] Simon Schmitt, Tuvia Gefen, Felix M. Stürner, Thomas Unden, Gerhard Wolff, Christoph Müller, Jochen Scheuer, Boris Naydenov, Matthew Markham, Sebastien Pezzagna, Jan Meijer, Ilai Schwarz, Martin Plenio, Alex Retzker, Liam P. McGuinness, Fedor Jelezko. Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor. Science 356, 6340, 832-837 (2017).

[3] Hengyun Zhou, Joonhee Choi, Soonwon Choi, Renate Landig, Alexander M. Douglas, Junichi Isoya, Fedor Jelezko, Shinobu Onoda, Hitoshi Sumiya, Paola Cappellaro, Helena S. Knowles, Hongkun Park, and Mikhail D. Lukin. Quantum Metrology with Strongly Interacting Spin Systems. Phys. Rev. X 10, 031003 (2020).

[4] Andreas Reiserer, Norbert Kalb, Machiel S. Blok, Koen J. M. van Bemmelen, Tim H. Taminiau, Ronald Hanson, Daniel J. Twitchen, and Matthew Markham. Robust Quantum-Network Memory Using Decoherence-Protected Subspaces of Nuclear Spins. Phys. Rev. X 6, 021040 (2016).

[5] David D. Awschalom, Ronald Hanson, Jörg Wrachtrup & Brian B. Zhou. Quantum technologies with optically interfaced solid-state spins. Nature Photonics 12, 516–527 (2018).

[6] T. Hensgens, T. Fujita, L. Janssen, Xiao Li, C. J. Van Diepen, C. Reichl, W. Wegscheider, S. Das Sarma & L. M. K. Vandersypen. Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array. Nature 548, 70–73 (2017).

[7] Robert Drost, Teemu Ojanen, Ari Harju & Peter Liljeroth. & Liljeroth, P. Topological states in engineered atomic lattices. Nature Physics 13, 668–671 (2017).

[8] Marlou R. Slot, Thomas S. Gardenier, Peter H. Jacobse, Guido C. P. van Miert, Sander N. Kempkes, Stephan J. M. Zevenhuizen, Cristiane Morais Smith, Daniel Vanmaekelbergh & Ingmar Swart. Experimental realization and characterization of an electronic Lieb lattice. Nature Physics 13, 672-676 (2017).

[9] Gregory D. Scholes, Graham R. Fleming, Lin X. Chen, Alán Aspuru-Guzik, Andreas Buchleitner, David F. Coker, Gregory S. Engel, Rienk van Grondelle, Akihito Ishizaki, David M. Jonas, Jeff S. Lundeen, James K. McCusker, Shaul Mukamel, Jennifer P. Ogilvie, Alexandra Olaya-Castro, Mark A. Ratner, Frank C. Spano, K. Birgitta Whaley & Xiaoyang Zhu. Using coherence to enhance function in chemical and biophysical systems. Nature 543, 647–656 (2017).

[10] Elisabet Romero, Vladimir I. Novoderezhkin & Rienk van Grondelle. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 543, 647–656 (2017).

[11] James Klatzow, Jonas N. Becker, Patrick M. Ledingham, Christian Weinzetl, Krzysztof T. Kaczmarek, Dylan J. Saunders, Joshua Nunn, Ian A. Walmsley, Raam Uzdin, and Eilon Poem. Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122, 110601 (2019).

[12] K. Ono, S. N. Shevchenko, T. Mori, S. Moriyama, and Franco Nori. F. Analog of a Quantum Heat Engine Using a Single-Spin Qubit. Phys. Rev. Lett. 125, 166802 (2020).

[13] Camille L. Latune, Ilya Sinayskiy & Francesco Petruccione. Roles of quantum coherences in thermal machines. Eur. Phys. J. Spec. Top. (2021).

[14] C. E. Bradley, J. Randall, M. H. Abobeih, R. C. Berrevoets, M. J. Degen, M. A. Bakker, M. Markham, D. J. Twitchen, and T. H. Taminiau. A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute. Phys. Rev. X 9, 031045 (2019).

[15] C. J. Stephen, B. L. Green, Y. N. D. Lekhai, L. Weng, P. Hill, S. Johnson, A. C. Frangeskou, P. L. Diggle, Y.-C. Chen, M. J. Strain, E. Gu, M. E. Newton, J. M. Smith, P. S. Salter, and G. W. Morley. Deep Three-Dimensional Solid-State Qubit Arrays with Long-Lived Spin Coherence. Phys. Rev. Applied 12, 064005 (2019).

[16] Flavio Del Santo and Borivoje Dakić. Coherence Equality and Communication in a Quantum Superposition. Phys. Rev. Lett. 124, 190501 (2020).

[17] Flavio Del Santo and Borivoje Dakić. Two-Way Communication with a Single Quantum Particle. Phys. Rev. Lett. 120, 060503 (2018).

[18] Kok Chuan Tan, Tyler Volkoff, Hyukjoon Kwon, and Hyunseok Jeong. Quantifying the Coherence between Coherent States. Phys. Rev. Lett. 119, 190405 (2017).

[19] Kaonan Micadei, John P. S. Peterson, Alexandre M. Souza, Roberto S. Sarthour, Ivan S. Oliveira, Gabriel T. Landi, Roberto M. Serra, and Eric Lutz. Experimental Validation of Fully Quantum Fluctuation Theorems Using Dynamic Bayesian Networks Phys.Rev.Lett. 127, 180603 (2021).

[20] Jose Joaquin Alonso, Eric Lutz, and Alessandro Romito. Thermodynamics of Weakly Measured Quantum Systems. Phys. Rev. Lett. 116, 080403 (2016).

[21] J. F. Haase, A. Smirne, J. Kołodyński, R. Demkowicz-Dobrzański, and S. F. Huelga, Fundamental limits to frequency estimation: a comprehensive microscopic perspective. New J. Phys. 20, 053009 (2018).

[22] Jan Czajkowski, Krzysztof Pawłowski and Rafał Demkowicz-Dobrzański. Many-body effects in quantum metrology. New J. Phys. 21 053031 (2019).

[23] Leonardo Novo, Masoud Mohseni & Yasser Omar. Disorder-assisted quantum transport in suboptimal decoherence regimes. Scientific Reports 6, 18142 (2016).

[24] Kaonan Micadei, Gabriel T. Landi, and Eric Lutz. Quantum Fluctuation Theorems beyond Two-Point Measurements. Phys. Rev. Lett. 124, 090602 (2020).

[25] María García Díaz, Giacomo Guarnieri, Mauro Paternostro. Quantum work statistics with initial coherence. Entropy 22(11), 1223 (2020).

[26] Rafał Demkowicz-Dobrzański, Jan Czajkowski, and Pavel Sekatski. Adaptive Quantum Metrology under General Markovian Noise. Phys. Rev. X 7, 041009 (2017).

[27] Stella Seah, Stefan Nimmrichter, and Valerio Scarani. Maxwell’s Lesser Demon: A Quantum Engine Driven by Pointer Measurements. Phys. Rev. Lett. 124, 100603 (2020).

[28] Harry J. D. Miller, Giacomo Guarnieri, Mark T. Mitchison, and John Goold. Quantum fluctuations hinder finite-time information erasure near the Landauer limit. Phys. Rev. Lett. 125, 160602 (2020).

[29] G. Francica, F. C. Binder, G. Guarnieri, M. T. Mitchison, J. Goold, and F. Plastina. Quantum Coherence and Ergotropy. Phys. Rev. Lett. 125, 180603 (2020).

[30] Stella Seah, Stefan Nimmrichter, Daniel Grimmer, Jader P. Santos, Valerio Scarani, and Gabriel T. Landi. Collisional Quantum Thermometry. Phys. Rev. Lett. 123, 180602 (2019).

[31] C. L. Latune, I. Sinayskiy & F. Petruccione. Quantum coherence, many-body correlations, and non-thermal effects for autonomous thermal machines. Scientific Reports 9, 3191 (2019).

[32] Devashish Tupkary, Abhishek Dhar, Manas Kulkarni, Archak Purkayastha. Fundamental limitations in Lindblad descriptions of systems weakly coupled to baths. Phys. Rev. A 105, 032208 (2022).

[33] Wojciech Hubert Zurek. Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003).

[34] Mohseni, M., Omar, Y., Engel, G. S., Plenio, M. Quantum Effects in Biology (Cambridge Univ Press, Cambridge, MA, 2014).

[35] Hong-Guang Duan, Valentyn I. Prokhorenko, Richard J. Cogdell, Khuram Ashraf, Amy L. Stevens, Michael Thorwart, and R. J. Dwayne Miller. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. PNAS 114 (32) 8493-8498 (2017).

[36] Giacomo Guarnieri, Michal Kolář, and Radim Filip. Steady-State Coherences by Composite System-Bath Interactions. Phys. Rev. Lett. 121, 070401 (2018).

[37] Giacomo Guarnieri, Daniele Morrone, Barış Çakmak, Francesco Plastina, Steve Campbelle. Non-equilibrium steady-states of memoryless quantum collision models. Phys. Lett. A 384, 24, 126576 (2020).

[38] Mike Reppert, Deborah Reppert, Leonardo A. Pachon, and Paul Brumer. Equilibrium stationary coherence in the multilevel spin-boson model. Phys. Rev. A 102, 012211 (2020).

[39] Román-Ancheyta, R., Kolář, M., Guarnieri, G., Filip, R. Enhanced steady-state coherences via repeated system-bath interactions. Phys. Rev. A 104, 062209 (2021).

[40] Archak Purkayastha, Giacomo Guarnieri, Mark T. Mitchison, Radim Filip & John Goold. Tunable phonon-induced steady-state coherence in a double-quantum-dot charge qubit. npj Quantum Information 6, 27 (2020).

[41] H.-P. Breuer, F.Petruccione. The Theory of Open Quantum Systems (Oxford University Press, 2007).

[42] U. Weiss. Quantum Dissipative Systems (World Scientific Publishing, 2012).

[43] H. Bateman, A. Erdélyi. Higher Transcendental Functions. Vol.2. Bessel Functions, Parabolic Cylinder Functions, Orthogonal Polynomials (McGraw-Hill, 1953).

[44] Elliott Lieb,Theodore Schultz, Daniel Mattis. Two soluble models of an antiferromagnetic chain. Annals of Physics 16, 407 (1961).

[45] S. Touzard, A. Kou, N. E. Frattini, V. V. Sivak, S. Puri, A. Grimm, L. Frunzio, S. Shankar, and M. H. Devoret. Gated Conditional Displacement Readout of Superconducting Qubits. Phys. Rev. Lett. 122, 080502 (2019).

[46] X. Ma, J. J. Viennot, S. Kotler, J. D. Teufel & K. W. Lehnert. Non-classical energy squeezing of a macroscopic mechanical oscillator. Nature Physics 17, 322-326 (2021).

[47] M.-L. Cai, Z.-D. Liu, W.-D. Zhao, Y.-K. Wu, Q.-X. Mei, Y. Jiang, L. He, X. Zhang, Z.-C. Zhou & L.-M. Duan. Observation of a quantum phase transition in the quantum Rabi model with a single trapped ion. Nature Communications 12, 1126 (2021).

Cited by

[1] Najmeh Etehadi Abari, Andrey Rakhubovsky, and Radim Filip, "Thermally-induced qubit coherence in quantum electromechanics", arXiv:2206.04499.

The above citations are from SAO/NASA ADS (last updated successfully 2022-10-05 02:40:58). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2022-10-05 02:40:57).