Environment-assisted strong coupling regime

Timofey T. Sergeev1,2,3, Ivan V. Vovcenko2, Alexander A. Zyablovsky1,2,3,4, and Evgeny S. Andrianov1,2,3

1Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moscow 127055, Russia
2Moscow Institute of Physics and Technology, 9 Institutskiy pereulok, Dolgoprudny 141700, Moscow region, Russia
3Institute for Theoretical and Applied Electromagnetics, 13 Izhorskaya, Moscow 125412, Russia
4Kotelnikov Institute of Radioengineering and Electronics RAS, 11-7 Mokhovaya, Moscow 125009, Russia

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Strong coupling regime takes place in open hybrid systems consisting of two or more physical subsystems when the coupling strength between subsystems exceeds the relaxation rate. The relaxation arises due to the interaction of the system with environment. For this reason, it is usually believed that the enhancement of the interaction with environment inevitably leads to a transition of the system from the strong to weak coupling regime. In this paper, we refute this common opinion. We demonstrate the interaction of the coupled system with environment induces an additional coupling between the subsystems that contribute to retention the system in the strong coupling regime. We show that the environmental-induced coupling strength is proportional to the product of the Rabi coupling strength by the gradient of the density of states of the reservoir. There is a critical Rabi coupling strength above which the environmental-induced coupling ensures that the system remains in the strong coupling regime at any relaxation rate. In this case, the strong coupling regime takes place even when the relaxation rate is significantly above the Rabi coupling strength between the subsystems. The critical coupling depends on the gradient of the reservoir density of states. We demonstrate that managing this gradient can serve as an additional tool to control the properties of the coupled systems.

Achievement of strong coupling regime in open hybrid systems is an important problem for many applications in quantum physics and optics. Strong coupling regime realizes when a coupling strength between subsystems of a hybrid system exceeds rates of relaxation, which arises due to the interaction with environment. For this reason, it is usually believed the enhancement of the interaction with environment inevitably leads to a transition of the system from the strong to weak coupling regime. We refute this opinion and demonstrate that the interaction with an environment leads to an appearance of the additional coupling strength between subsystems that is proportional to the environmental density of states. There is a critical coupling strength above which the environmental-induced coupling ensures that the system is in the strong coupling regime at any relaxation rate. Thus, the environmental density of states is an additional parameter, which controls the properties of the open hybrid quantum systems.

► BibTeX data

► References

[1] R. Chikkaraddy, B. De Nijs, F. Benz, et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities, Nature 535, 127-130 (2016).

[2] T. Hummer, F. Garcia-Vidal, L. Martin-Moreno, D. Zueco. Weak and strong coupling regimes in plasmonic QED, Phys. Rev. B 87, 115419 (2013).

[3] P. Torma, W. L. Barnes. Strong coupling between surface plasmon polaritons and emitters: a review, Rep. Prog. Phys. 78, 013901 (2015).

[4] G. Zengin, M. Wersall, S. Nilsson, T. J. Antosiewicz, M. Kall, T. Shegai. Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions, Phys. Rev. Lett. 114, 157401 (2015).

[5] B. Munkhbat, M. Wersall, D. G. Baranov, T. J. Antosiewicz, T. Shegai. Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas, Sci. Adv. 4, eaas9552 (2018).

[6] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, D. Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432, 200 (2004).

[7] F. Benz, M.K. Schmidt, A. Dreismann, et al. Single-molecule optomechanics in “picocavities, Science 354(6313), 726-729 (2016).

[8] K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu. Quantum nature of a strongly coupled single quantum dot–cavity system, Nature 445, 896 (2007).

[9] J. P. Reithmaier, G. Sęk, A. Löffler, et al. Strong coupling in a single quantum dot–semiconductor microcavity system, Nature 432(7014), 197-200 (2004).

[10] S. Zanotto, A. Tredicucci. Universal lineshapes at the crossover between weak and strong critical coupling in Fano-resonant coupled oscillators, Sci. Rep. 6, 24592 (2016).

[11] S. Zanotto, F. P. Mezzapesa, F. Bianco, G. Biasiol, L. Baldacci, M. S. Vitiello, L. Sorba, R. Colombelli, A. Tredicucci. Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption, Nature Phys. 10, 830 (2014).

[12] M.A. Miri, A. Alu. Exceptional points in optics and photonics, Science 363, 6422 (2019).

[13] S. K. Ozdemir, S. Rotter, F. Nori, L. Yang. Parity–time symmetry and exceptional points in photonics, Nature Mater. 18, 783 (2019).

[14] W. Gao, X. Li, M. Bamba, J. Kono. Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons, Nature Photon. 12, 362 (2018).

[15] B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, L. Yang. Loss-induced suppression and revival of lasing, Science 346, 328-332 (2014).

[16] N. Moiseyev. Non-Hermitian quantum mechanics, Cambridge University Press (2011).

[17] M.V. Berry. Physics of Nonhermitian Degeneracies, Czech. J. Phys. 54, 1039 (2004).

[18] D. Sanvitto, S. Kena-Cohen. The road towards polaritonic devices, Nature Mater. 15, 1061 (2016).

[19] D.D. Smith, H. Chang, K.A. Fuller, A. Rosenberger, R.W. Boyd. Coupled-resonator-induced transparency, Phys. Rev. A 69, 063804 (2004).

[20] E. Orgiu, J. George, J.A. Hutchison, et al. Conductivity in organic semiconductors hybridized with the vacuum field, Nature Mater. 14, 1123-1129 (2015).

[21] J.A. Hutchison, A. Liscio, T. Schwartz, A. Canaguier-Durand, C. Genet, V. Palermo, P. Samori, T.W. Ebbesen. Tuning the Work-Function Via Strong Coupling, Adv. Mater. 25, 2481 (2013).

[22] J.A. Hutchison, T. Schwartz, C. Genet, E. Devaux, T.W. Ebbesen. Modifying Chemical Landscapes by Coupling to Vacuum Fields, Angew. Chem. Int. Ed. 51, 1592 (2012).

[23] J. Galego, F.J. Garcia-Vidal, J. Feist. Suppressing photochemical reactions with quantized light fields, Nat. Commun. 7, 13841 (2016).

[24] N. Nefedkin, E. Andrianov, A. Vinogradov. The role of strong coupling in the process of photobleaching suppression, J. Phys. Chem. C 124, 18234 (2020).

[25] A.A. Zyablovsky, I.V. Doronin, E.S. Andrianov, A.A. Pukhov, Y.E. Lozovik, A. P. Vinogradov, A.A. Lisyansky. Exceptional Points as Lasing Prethresholds, Laser Photonics Rev. 15, 2000450 (2021).

[26] I.V. Doronin, A.A. Zyablovsky, E.S. Andrianov. Strong-coupling-assisted formation of coherent radiation below the lasing threshold, Opt. Express 29, 5624 (2021).

[27] I.V. Doronin, A.A. Zyablovsky, E.S. Andrianov, A.A. Pukhov, A.P. Vinogradov. Lasing without inversion due to parametric instability of the laser near the exceptional point, Phys. Rev. A 100, 021801(R) (2019).

[28] X. Liu, T. Galfsky, Z. Sun, F. Xia, E.-C. Lin, Y.-H. Lee, S. Kena-Cohen, V.M. Menon. Strong light–matter coupling in two-dimensional atomic crystals, Nature Photon. 9, 30 (2015).

[29] I.-C. Hoi, C. Wilson, G. Johansson, T. Palomaki, B. Peropadre, P. Delsing. Demonstration of a single-photon router in the microwave regime, Phys. Rev. Lett. 107, 073601 (2011).

[30] T. Volz, A. Reinhard, M. Winger, A. Badolato, K.J. Hennessy, E.L. Hu, A. Imamoğlu. Ultrafast all-optical switching by single photons, Nature Photon. 6, 605 (2012).

[31] R. Schoelkopf, S. Girvin. Wiring up quantum systems, Nature 451, 664 (2008).

[32] T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien. Quantum computers, Nature 464, 45 (2010).

[33] Z.-L. Xiang, S. Ashhab, J. You, F. Nori. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85, 623 (2013).

[34] R. Hanai, A. Edelman, Y. Ohashi, P.B. Littlewood. Non-Hermitian phase transition from a polariton Bose-Einstein condensate to a photon laser, Phys. Rev. Lett. 122, 185301 (2019).

[35] Y.-H. Lai, Y.-K. Lu, M.-G. Suh, Z. Yuan, K. Vahala. Observation of the exceptional-point-enhanced Sagnac effect, Nature 576, 65 (2019).

[36] H. Hodaei, A.U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D.N. Christodoulides, M. Khajavikhan. Enhanced sensitivity at higher-order exceptional points, Nature 548, 187 (2017).

[37] W. Chen, S. K. Ozdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity, Nature 548, 192 (2017).

[38] J. Flick, N. Rivera, P. Narang. Strong light-matter coupling in quantum chemistry and quantum photonics, Nanophotonics 7, 1479 (2018).

[39] A. Thomas, L. Lethuillier-Karl, K. Nagarajan. Tilting a ground-state reactivity landscape by vibrational strong coupling, Science 363, 615 (2019).

[40] A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, J. Vučković. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade, Nature Phys. 4, 859 (2008).

[41] H. Hodaei, M.-A. Miri, M. Heinrich, D.N. Christodoulidies, M. Khajavikan. Parity-time–symmetric microring lasers, Science 346, 975 (2014).

[42] L. Feng, Z.J. Wong, R.-M. Ma, Y. Wang, X. Zhang. Single-mode laser by parity-time symmetry breaking, Science 346, 972 (2014).

[43] S. De Liberato, D. Gerace, I. Carusotto, C. Ciuti. Extracavity quantum vacuum radiation from a single qubit, Phys. Rev. A 80, 053810 (2009).

[44] F. Beaudoin, J.M. Gambetta, A. Blais. Dissipation and ultrastrong coupling in circuit QED, Phys. Rev. A 84, 043832 (2011).

[45] A. Ridolfo, M. Leib, S. Savasta, M.J. Hartmann. Photon Blockade in the Ultrastrong Coupling Regime, Phys. Rev. Lett. 109, 193602 (2012).

[46] R. Stassi, S. Savasta, L. Garziano, B. Spagnolo, F. Nori. Output field-quadrature measurements and squeezing in ultrastrong cavity-QED, New J. Phys. 18, 123005 (2016).

[47] S. De Liberato. Virtual photons in the ground state of a dissipative system, Nat. Commun. 8, 1465 (2017).

[48] M. Bamba, T. Ogawa. Dissipation and detection of polaritons in the ultrastrong-coupling regime, Phys. Rev. A 86, 063831 (2012).

[49] M. Bamba, T. Ogawa. System-environment coupling derived by Maxwell's boundary conditions from the weak to the ultrastrong light-matter-coupling regime, Phys. Rev. A 88, 013814 (2013).

[50] M. Bamba, T. Ogawa. Recipe for the Hamiltonian of system-environment coupling applicable to the ultrastrong-light-matter-interaction regime, Phys. Rev. A 89, 023817 (2014).

[51] S. De Liberato. Comment on “System-environment coupling derived by Maxwell's boundary conditions from the weak to the ultrastrong light-matter-coupling regime”, Phys. Rev. A 89, 017801 (2014).

[52] M. Bamba, K. Inomata, Y. Nakamura. Superradiant Phase Transition in a Superconducting Circuit in Thermal Equilibrium, Phys. Rev. Lett. 117, 173601 (2016).

[53] V.Y. Shishkov, E.S. Andrianov, A.A. Pukhov, A.P. Vinogradov, A.A. Lisyansky. Relaxation of interacting open quantum systems, Phys.-Uspekhi 62, 510 (2019).

[54] V.Y. Shishkov, E.S. Andrianov, A.A. Pukhov, A.P. Vinogradov, A.A. Lisyansky. Perturbation theory for Lindblad superoperators for interacting open quantum systems, Phys. Rev. A 102, 032207 (2020).

[55] R. Kosloff. Quantum Thermodynamics: A Dynamical Viewpoint, Entropy 15, 2100 (2013).

[56] D. Mozgunov, D. Lidar. Completely positive master equation for arbitrary driving and small level spacing, Quantum 4, 227 (2020).

[57] F. Nathan, M. S. Rudner. Universal Lindblad equation for open quantum systems, Phys. Rev. B 102, 115109 (2020).

[58] S. Scali, J. Anders, L. A. Correa. Local master equations bypass the secular approximation, Quantum 5, 451 (2021).

[59] G. Hackenbroich, C. Viviescas, F. Haake. Quantum statistics of overlapping modes in open resonators, Phys. Rev. A 68, 063805 (2003).

[60] I.V. Vovchenko, V.Y. Shishkov, A.A. Zyablovsky, E.S. Andrianov. Model for the description of the relaxation of quantum-mechanical systems with closely spaced energy levels, JETP Letters 114, 51-57 (2021).

[61] H. Carmichael. An open systems approach to quantum optics, Springer-Verlag, Berlin (1991).

[62] C.W. Gardiner, P. Zoller. Quantum noise: A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, Springer-Verlag, Berlin (2004).

[63] J.O. Gonzalez, L.A. Correa, G. Nocerino, J.P. Palao, D. Alonso, G. Adesso. Testing the validity of the 'local' and 'global' GKLS master equations on an exactly solvable model, Open Syst. Inf. Dyn. 24, 1740010 (2017).

[64] A. Rivas, A.D.K. Plato, S.F. Huelga, M.B. Plenio. Markovian master equations: a critical study, New J. Phys. 12, 113032 (2010).

[65] I. I. Arkhipov, A. Miranowicz, F. Minganti, F. Nori. Liouvillian exceptional points of any order in dissipative linear bosonic systems: Coherence functions and switching between PT and anti-PT symmetries, Phys. Rev. A 102, 033715 (2020).

[66] F. Minganti, A. Miranowicz, R. W. Chhajlany, F. Nori. Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps, Phys. Rev. A 100, 062131 (2019).

[67] F. Minganti, A. Miranowicz, R. W. Chhajlany, I. I. Arkhipov, F. Nori. Hybrid-Liouvillian formalism connecting exceptional points of non-Hermitian Hamiltonians and Liouvillians via postselection of quantum trajectories, Phys. Rev. A 101, 062112 (2020).

[68] I. I. Arkhipov, A. Miranowicz, F. Minganti, F. Nori. Quantum and semiclassical exceptional points of a linear system of coupled cavities with losses and gain within the Scully-Lamb laser theory, Phys. Rev. A 101, 013812 (2020).

[69] S. Franke, S. Hughes, M. K. Dezfouli, P. T. Kristensen, K. Busch, A. Knorr, M. Richter. Quantization of quasinormal modes for open cavities and plasmonic cavity quantum electrodynamics, Phys. Rev. Lett. 122, 213901 (2019).

[70] T. Pickering, J. M. Hamm, A. F. Page, S. Wuestner, O. Hess. (2014). Cavity-free plasmonic nanolasing enabled by dispersionless stopped light, Nat. Commun. 5, 4972 (2014).

[71] A.F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, F. Nori. Ultrastrong coupling between light and matter, Nature Reviews Physics 1, 19-40 (2019).

[72] P. Forn-Díaz, L. Lamata, E. Rico, J. Kono, E. Solano. Ultrastrong coupling regimes of light-matter interaction, Rev. Mod. Phys. 91, 025005 (2019).

[73] T. Niemczyk, F. Deppe, H. Huebl, et al. Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nature Phys. 6(10), 772-776 (2010).

[74] I.I. Rabi. Space quantization in a gyrating magnetic field, Phys. Rev. 51, 652 (1937).

[75] R.H. Dicke. Coherence in spontaneous radiation processes, Phys. Rev. A 93, 99 (1954).

[76] A.A. Anappara, S. De Liberato, A. Tredicucci, C. Ciuti, G. Biasiol, L. Sorba, F. Beltram. Signatures of the ultrastrong light-matter coupling regime, Phys. Rev. B 79, 201303 (2009).

[77] P. Forn-Díaz, J. Lisenfeld, D. Marcos, J.J. Garcia-Ripoll, E. Solano, C.J.P.M. Harmans, J.E. Mooij. Observation of the Bloch-Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime, Phys. Rev. Lett. 105, 237001 (2010).

[78] C. Ciuti, G. Bastard, I. Carusotto. Quantum vacuum properties of the intersubband cavity polariton field, Phys. Rev. B 72, 115303 (2005).

[79] X. Gu, A. F. Kockum, A. Miranowicz, Y.-X. Liu, F. Nori. Microwave photonics with superconducting quantum circuits, Phys. Rep. 718-719, 1-102 (2017).

[80] D. Z. Rossatto, C. J. Villas-Bôas, M. Sanz, E. Solano. Spectral classification of coupling regimes in the quantum Rabi model, Phys. Rev. A 96, 013849 (2017).

[81] A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva. Synchronization: From simple to complex, Springer (2009).

[82] J. Plemelj. Problems in the sense of Riemann and Klein, Interscience Publishers, New York (1964).

[83] M. Cattaneo, G.L. Giorgi, S. Maniscalco, R. Zambrini. Local versus global master equation with common and separate baths: superiority of the global approach in partial secular approximation, New J. Phys. 21, 113045 (2019).

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-05-29 03:26:08). On SAO/NASA ADS no data on citing works was found (last attempt 2022-05-29 03:26:09).