Bounds on the recurrence probability in periodically-driven quantum systems

Tanmoy Pandit1, Alaina M. Green2, C. Huerta Alderete2, Norbert M. Linke2, and Raam Uzdin1

1Fritz Haber Research Center for Molecular Dynamics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
2Joint Quantum Institute and Department of Physics, University of Maryland, College Park, MD 20742 USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Periodically-driven systems are ubiquitous in science and technology. In quantum dynamics, even a small number of periodically-driven spins leads to complicated dynamics. Hence, it is of interest to understand what constraints such dynamics must satisfy. We derive a set of constraints for each number of cycles. For pure initial states, the observable being constrained is the recurrence probability. We use our constraints for detecting undesired coupling to unaccounted environments and drifts in the driving parameters. To illustrate the relevance of these results for modern quantum systems we demonstrate our findings experimentally on a trapped-ion quantum computer, and on various IBM quantum computers. Specifically, we provide two experimental examples where these constraints surpass fundamental bounds associated with known one-cycle constraints. This scheme can potentially be used to detect the effect of the environment in quantum circuits that cannot be classically simulated. Finally, we show that, in practice, testing an $n$-cycle constraint requires executing only $O(\sqrt{n})$ cycles, which makes the evaluation of constraints associated with hundreds of cycles realistic.

► BibTeX data

► References

[1] Rosemary J Harris and Gunther M Schütz. Fluctuation theorems for stochastic dynamics. Journal of Statistical Mechanics: Theory and Experiment, 2007 (07): P07020, 2007. 10.1088/​1742-5468/​2007/​07/​P07020. URL https:/​/​​10.1088/​1742-5468/​2007/​07/​P07020.

[2] Udo Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports on progress in physics, 75 (12): 126001, 2012. https:/​/​​10.1088/​0034-4885/​75/​12/​126001.

[3] Christopher Jarzynski. Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys., 2 (1): 329–351, 2011. 10.1146/​annurev-conmatphys-062910-140506. URL https:/​/​​10.1146/​annurev-conmatphys-062910-140506.

[4] Matteo Polettini, Alexandre Lazarescu, and Massimiliano Esposito. Tightening the uncertainty principle for stochastic currents. Physical Review E, 94 (5): 052104, 2016. 10.1103/​PhysRevE.94.052104. URL https:/​/​​10.1103/​PhysRevE.94.052104.

[5] André M Timpanaro, Giacomo Guarnieri, John Goold, and Gabriel T Landi. Thermodynamic uncertainty relations from exchange fluctuation theorems. Physical review letters, 123 (9): 090604, 2019. 10.1103/​PhysRevLett.123.090604. URL https:/​/​​10.1103/​PhysRevLett.123.0906044.

[6] Timur Koyuk, Udo Seifert, and Patrick Pietzonka. A generalization of the thermodynamic uncertainty relation to periodically driven systems. Journal of Physics A: Mathematical and Theoretical, 52 (2): 02LT02, 2018. 10.1088/​1751-8121/​aaeec4. URL https:/​/​​10.1088/​1751-8121/​aaeec4.

[7] Andre C Barato and Udo Seifert. Thermodynamic uncertainty relation for biomolecular processes. Physical review letters, 114 (15): 158101, 2015. 10.1103/​PhysRevLett.114.158101. URL https:/​/​​10.1103/​PhysRevLett.114.158101.

[8] Raam Uzdin and Saar Rahav. Global passivity in microscopic thermodynamics. Physical Review X, 8 (2): 021064, 2018. https:/​/​​10.1103/​PhysRevX.8.021064. URL 10.1103/​PhysRevX.8.021064.

[9] Raam Uzdin and Saar Rahav. Passivity deformation approach for the thermodynamics of isolated quantum setups. PRX Quantum, 2 (1): 010336, 2021. 10.1103/​PRXQuantum.2.010336. URL https:/​/​​10.1103/​PRXQuantum.2.010336.

[10] Philipp Strasberg and Andreas Winter. First and second law of quantum thermodynamics: A consistent derivation based on a microscopic definition of entropy. PRX Quantum, 2 (3): 030202, 2021. 10.1103/​PRXQuantum.2.030202. URL https:/​/​​10.1103/​PRXQuantum.2.030202.

[11] Manabendra Nath et. al. Bera. Thermodynamics as a consequence of information conservation. Quantum, 3: 121, 2019. 10.22331/​q-2019-02-14-121. URL https:/​/​​10.22331/​q-2019-02-14-121.

[12] Andre M Timpanaro, Jader P Santos, and Gabriel T Landi. Landauer's principle at zero temperature. Physical Review Letters, 124 (24): 240601, 2020. 10.1103/​PhysRevLett.124.240601. URL https:/​/​​10.1103/​PhysRevLett.124.240601.

[13] Christopher Jarzynski. Rare events and the convergence of exponentially averaged work values. Physical Review E, 73 (4): 046105, 2006. 10.1103/​PhysRevE.73.046105. URL https:/​/​​10.1103/​PhysRevE.73.046105.

[14] Raam Uzdin. The second law and beyond in microscopic quantum setups. In Thermodynamics in the Quantum Regime, pages 681–712. Springer, 2018. 10.1007/​978-3-319-99046-0_28. URL https:/​/​​10.1007/​978-3-319-99046-0_28.

[15] Ivan Henao, Raam Uzdin, and Nadav Katz. Experimental detection of microscopic environments using thermodynamic observables. arXiv preprint arXiv:1908.08968, 2019. 10.48550/​arXiv.1908.08968. URL https:/​/​​10.48550/​arXiv.1908.08968.

[16] Daiwei Zhu, Sonika Johri, Norbert M Linke, KA Landsman, C Huerta Alderete, Nhunh H Nguyen, AY Matsuura, TH Hsieh, and Christopher Monroe. Generation of thermofield double states and critical ground states with a quantum computer. Proceedings of the National Academy of Sciences, 117 (41): 25402–25406, 2020. 10.1073/​pnas.2006337117. URL https:/​/​​10.1073/​pnas.2006337117.

[17] Michael A Nielsen. An introduction to majorization and its applications to quantum mechanics. Lecture Notes, Department of Physics, University of Queensland, Australia, 2002.

[18] John A Smolin, Frank Verstraete, and Andreas Winter. Entanglement of assistance and multipartite state distillation. Physical Review A, 72 (5): 052317, 2005. 10.1103/​PhysRevA.72.052317. URL https:/​/​​10.1103/​PhysRevA.72.052317.

[19] Asher Peres. Quantum theory: concepts and methods, vol. 57. Fundamental Theories of Physics, 2006. 10.1119/​1.17946. URL https:/​/​​10.1119/​1.17946.

[20] Massimiliano Esposito and Christian Van den Broeck. Second law and landauer principle far from equilibrium. EPL (Europhysics Letters), 95 (4): 40004, 2011. 10.1209/​0295-5075/​95/​40004. URL https:/​/​​10.1209/​0295-5075/​95/​40004.

[21] IM Bassett. Alternative derivation of the classical second law of thermodynamics. Physical Review A, 18 (5): 2356, 1978. 10.1103/​PhysRevA.18.2356. URL https:/​/​​10.1103/​PhysRevA.18.2356.

[22] Norbert M Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt, Kevin A Landsman, Kenneth Wright, and Christopher Monroe. Experimental comparison of two quantum computing architectures. Proceedings of the National Academy of Sciences, 114 (13): 3305–3310, 2017. 10.1073/​pnas.1618020114. URL https:/​/​​10.1073/​pnas.1618020114.

[23] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari, Nhung Hong Nguyen, and Cinthia Huerta Alderete. Full-stack, real-system quantum computer studies: Architectural comparisons and design insights. In 2019 ACM/​IEEE 46th Annual International Symposium on Computer Architecture (ISCA), pages 527–540. IEEE, 2019. 10.48550/​arXiv.1905.11349. URL https:/​/​​10.48550/​arXiv.1905.11349.

[24] Raam Uzdin. Methods for measuring noise, purity changes, and entanglement entropy in quantum devices and systems. US Provisional Patent: 63/​260501.

[25] Raam Uzdin. Methods for measuring noise, purity changes, and entanglement entropy in quantum devices and systems. arXiv preprint arXiv:2112.00546, 2021. 10.48550/​arXiv.2112.00546. URL https:/​/​​10.48550/​arXiv.2112.00546.

[26] Dominic V Else, Bela Bauer, and Chetan Nayak. Floquet time crystals. Physical review letters, 117 (9): 090402, 2016. 10.1103/​PhysRevLett.117.090402. URL https:/​/​​10.1103/​PhysRevLett.117.090402.

[27] Pai Peng, Chao Yin, Xiaoyang Huang, Chandrasekhar Ramanathan, and Paola Cappellaro. Floquet prethermalization in dipolar spin chains. Nature Physics, 17 (4): 444–447, 2021. 10.1038/​s41567-020-01120-z. URL https:/​/​​10.1038/​s41567-020-01120-z.

[28] Jiehang Zhang, Paul W Hess, A Kyprianidis, Petra Becker, A Lee, J Smith, Gaetano Pagano, I-D Potirniche, Andrew C Potter, Ashvin Vishwanath, et al. Observation of a discrete time crystal. Nature, 543 (7644): 217–220, 2017. 10.1038/​nature21413. URL https:/​/​​10.1038/​nature21413.

[29] Klaus Mølmer and Anders Sørensen. Multiparticle entanglement of hot trapped ions. Physical Review Letters, 82 (9): 1835, 1999. 10.1103/​PhysRevLett.82.1835. URL https:/​/​​10.1103/​PhysRevLett.82.1835.

[30] Enrique Solano, Ruynet Lima de Matos Filho, and Nicim Zagury. Deterministic bell states and measurement of the motional state of two trapped ions. Physical Review A, 59 (4): R2539, 1999. 10.1103/​PhysRevA.59.R2539. URL https:/​/​​10.1103/​PhysRevA.59.R2539.

[31] GJ Milburn, S Schneider, and DFV James. Ion trap quantum computing with warm ions. Fortschritte der Physik: Progress of Physics, 48 (9-11): 801–810, 2000. 10.1002/​1521-3978(200009)48:9/​11<801::AID-PROP801>3.0.CO;2-1. URL https:/​/​​10.1002/​1521-3978(200009)48:9/​11<801::AID-PROP801>3.0.CO;2-1.

[32] Shi-Liang Zhu, Christopher Monroe, and L-M Duan. Arbitrary-speed quantum gates within large ion crystals through minimum control of laser beams. EPL (Europhysics Letters), 73 (4): 485, 2006. 10.1209/​epl/​i2005-10424-4.

[33] Taeyoung Choi, Shantanu Debnath, TA Manning, Caroline Figgatt, Z-X Gong, L-M Duan, and Christopher Monroe. Optimal quantum control of multimode couplings between trapped ion qubits for scalable entanglement. Physical review letters, 112 (19): 190502, 2014. 10.1103/​PhysRevLett.112.190502. URL https:/​/​​10.1103/​PhysRevLett.112.190502.

Cited by

[1] P. Penshin, T. Amro, T. Zabelotsky, A. Abramovich, T. Pandit, K. I. O. Ben'Attar, A. Hen, R. Uzdin, and N. Bar-Gill, "Realization of robust quantum noise characterization in the presence of coherent errors", AVS Quantum Science 6 2, 025002 (2024).

[2] Nikolay P. Tretyakov, "Fast driven quantum systems: interaction picture and boundary conditions", Physica Scripta 96 12, 125106 (2021).

[3] Raam Uzdin, "Methods for measuring noise, purity changes, and entanglement entropy in quantum devices and systems", arXiv:2112.00546, (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2024-07-15 08:40:41) and SAO/NASA ADS (last updated successfully 2024-07-15 08:40:42). The list may be incomplete as not all publishers provide suitable and complete citation data.