Photon-photon interactions in Rydberg-atom arrays
1Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
2ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
Published: | 2022-03-30, volume 6, page 674 |
Eprint: | arXiv:2101.11375v3 |
Doi: | https://doi.org/10.22331/q-2022-03-30-674 |
Citation: | Quantum 6, 674 (2022). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
We investigate the interaction of weak light fields with two-dimensional lattices of atoms with high lying atomic Rydberg states. This system features different interactions that act on disparate length scales, from zero-range defect scattering of atomic excitations and finite-range dipole exchange processes to long-range Rydberg-state interactions, which span the entire array and can block multiple Rydberg excitations. Analyzing their interplay, we identify conditions that yield a nonlinear quantum mirror which coherently splits incident fields into correlated photon-pairs in a single transverse mode, while transmitting single photons unaffected. In particular, we find strong anti-bunching of the transmitted light with equal-time pair correlations that decrease exponentially with an increasing range of the Rydberg blockade. Such strong photon-photon interactions in the absence of photon losses open up promising avenues for the generation and manipulation of quantum light, and the exploration of many-body phenomena with interacting photons.
► BibTeX data
► References
[1] D. E. Chang, V. Vuletić, and M. D. Lukin, Nature Photonics 8, 685 (2014).
https://doi.org/10.1038/nphoton.2014.192
[2] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature 436, 87 (2005).
https://doi.org/10.1038/nature03804
[3] J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, Nature Photonics 8, 965 (2014).
https://doi.org/10.1038/nphoton.2014.253
[4] A. Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015).
https://doi.org/10.1103/RevModPhys.87.1379
[5] S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, Phys. Rev. X 8, 011018 (2018).
https://doi.org/10.1103/PhysRevX.8.011018
[6] D. O'Shea, C. Junge, J. Volz, and A. Rauschenbeutel, Phys. Rev. Lett. 111, 193601 (2013).
https://doi.org/10.1103/PhysRevLett.111.193601
[7] A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
https://doi.org/10.1103/PhysRevLett.109.033603
[8] J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
https://doi.org/10.1126/science.1237125
[9] T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).
https://doi.org/10.1038/nature13188
[10] J. Petersen, J. Volz, and A. Rauschenbeutel, Science 346, 67 (2014).
https://doi.org/10.1126/science.1257671
[11] P. Lodahl, S. Mahmoodian, and S. Stobbe, Rev. Mod. Phys. 87, 347 (2015).
https://doi.org/10.1103/RevModPhys.87.347
[12] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble, Rev. Mod. Phys. 90, 031002 (2018).
https://doi.org/10.1103/RevModPhys.90.031002
[13] M. Noaman, M. Langbecker, and P. Windpassinger, Opt. Lett. 43, 3925 (2018).
https://doi.org/10.1364/OL.43.003925
[14] S.-P. Yu, J. A. Muniz, C.-L. Hung, and H. J. Kimble, Proceedings of the National Academy of Sciences 116, 12743 (2019).
https://doi.org/10.1073/pnas.1822110116
[15] A. S. Prasad, J. Hinney, S. Mahmoodian, K. Hammerer, S. Rind, P. Schneeweiss, A. S. Sørensen, J. Volz, and A. Rauschenbeutel, Nature Photonics 14, 719 (2020).
https://doi.org/10.1038/s41566-020-0692-z
[16] J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Phys. Rev. Lett. 105, 193603 (2010).
https://doi.org/10.1103/PhysRevLett.105.193603
[17] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Nature 488, 57 (2012).
https://doi.org/10.1038/nature11361
[18] J. D. Thompson, T. L. Nicholson, Q.-Y. Liang, S. H. Cantu, A. V. Venkatramani, S. Choi, I. A. Fedorov, D. Viscor, T. Pohl, M. D. Lukin, and V. Vuletić, Nature 542, 206 (2017).
https://doi.org/10.1038/nature20823
[19] A. Paris-Mandoki, C. Braun, J. Kumlin, C. Tresp, I. Mirgorodskiy, F. Christaller, H. P. Büchler, and S. Hofferberth, Phys. Rev. X 7, 041010 (2017).
https://doi.org/10.1103/PhysRevX.7.041010
[20] C. Murray and T. Pohl, Advances In Atomic, Molecular, and Optical Physics, 65, 321 (2016).
https://doi.org/10.1016/bs.aamop.2016.04.005
[21] O. Firstenberg, C. S. Adams, and S. Hofferberth, J. Phys B 49, 152003 (2016).
https://doi.org/10.1088/0953-4075/49/15/152003
[22] S. Baur, D. Tiarks, G. Rempe, and S. Dürr, Phys. Rev. Lett. 112, 073901 (2014).
https://doi.org/10.1103/PhysRevLett.112.073901
[23] H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Hofferberth, Phys. Rev. Lett. 113, 053601 (2014).
https://doi.org/10.1103/PhysRevLett.113.053601
[24] D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, Phys. Rev. Lett. 113, 053602 (2014).
https://doi.org/10.1103/PhysRevLett.113.053602
[25] D. Tiarks, S. Schmidt-Eberle, T. Stolz, G. Rempe, and S. Dürr, Nature Physics 15, 124 (2019).
https://doi.org/10.1038/s41567-018-0313-7
[26] A. V. Gorshkov, R. Nath, and T. Pohl, Phys. Rev. Lett. 110, 153601 (2013).
https://doi.org/10.1103/PhysRevLett.110.153601
[27] C. R. Murray, I. Mirgorodskiy, C. Tresp, C. Braun, A. Paris-Mandoki, A. V. Gorshkov, S. Hofferberth, and T. Pohl, Phys. Rev. Lett. 120, 113601 (2018).
https://doi.org/10.1103/PhysRevLett.120.113601
[28] C. R. Murray, A. V. Gorshkov, and T. Pohl, New Journal of Physics 18, 092001 (2016).
https://doi.org/10.1088/1367-2630/18/9/092001
[29] J. Otterbach, M. Moos, D. Muth, and M. Fleischhauer, Phys. Rev. Lett. 111, 113001 (2013).
https://doi.org/10.1103/PhysRevLett.111.113001
[30] E. Zeuthen, M. J. Gullans, M. F. Maghrebi, and A. V. Gorshkov, Phys. Rev. Lett. 119, 043602 (2017).
https://doi.org/10.1103/PhysRevLett.119.043602
[31] P. Bienias, J. Douglas, A. Paris-Mandoki, P. Titum, I. Mirgorodskiy, C. Tresp, E. Zeuthen, M. J. Gullans, M. Manzoni, S. Hofferberth, D. Chang, and A. V. Gorshkov, Phys. Rev. Research 2, 033049 (2020).
https://doi.org/10.1103/PhysRevResearch.2.033049
[32] G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, Phys. Rev. Lett. 117, 243601 (2016).
https://doi.org/10.1103/PhysRevLett.117.243601
[33] J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 119, 023603 (2017).
https://doi.org/10.1103/PhysRevLett.119.023603
[34] R. J. Bettles, J. c. v. Minář, C. S. Adams, I. Lesanovsky, and B. Olmos, Phys. Rev. A 96, 041603 (2017).
https://doi.org/10.1103/PhysRevA.96.041603
[35] P.-O. Guimond, A. Grankin, D. V. Vasilyev, B. Vermersch, and P. Zoller, Phys. Rev. Lett. 122, 093601 (2019).
https://doi.org/10.1103/PhysRevLett.122.093601
[36] K. E. Ballantine and J. Ruostekoski, Phys. Rev. Lett. 125, 143604 (2020).
https://doi.org/10.1103/PhysRevLett.125.143604
[37] R. J. Bettles, S. A. Gardiner, and C. S. Adams, Phys. Rev. Lett. 116, 103602 (2016).
https://doi.org/10.1103/PhysRevLett.116.103602
[38] E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, Phys. Rev. Lett. 118, 113601 (2017).
https://doi.org/10.1103/PhysRevLett.118.113601
[39] J. Rui, D. Wei, A. Rubio-Abadal, S. Hollerith, J. Zeiher, D. M. Stamper-Kurn, C. Gross, and I. Bloch, Nature 583, 369 (2020).
https://doi.org/10.1038/s41586-020-2463-x
[40] A. Grankin, P. O. Guimond, D. V. Vasilyev, B. Vermersch, and P. Zoller, Phys. Rev. A 98, 043825 (2018).
https://doi.org/10.1103/PhysRevA.98.043825
[41] R. Bekenstein, I. Pikovski, H. Pichler, E. Shahmoon, S. F. Yelin, and M. D. Lukin, Nature Physics 16, 676 (2020).
https://doi.org/10.1038/s41567-020-0845-5
[42] A. Cidrim, T. S. do Espirito Santo, J. Schachenmayer, R. Kaiser, and R. Bachelard, Phys. Rev. Lett. 125, 073601 (2020).
https://doi.org/10.1103/PhysRevLett.125.073601
[43] L. A. Williamson, M. O. Borgh, and J. Ruostekoski, Phys. Rev. Lett. 125, 073602 (2020).
https://doi.org/10.1103/PhysRevLett.125.073602
[44] M. Moreno-Cardoner, D. Goncalves, and D. E. Chang, Phys. Rev. Lett. 127, 263602 (2021).
https://doi.org/10.1103/PhysRevLett.127.263602
[45] N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104, 195302 (2010).
https://doi.org/10.1103/PhysRevLett.104.195302
[46] J. Zeiher, P. Schauß, S. Hild, T. Macrì, I. Bloch, and C. Gross, Phys. Rev. X 5, 031015 (2015).
https://doi.org/10.1103/PhysRevX.5.031015
[47] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).
https://doi.org/10.1103/PhysRevLett.85.2208
[48] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001).
https://doi.org/10.1103/PhysRevLett.87.037901
[49] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).
https://doi.org/10.1103/RevModPhys.82.2313
[50] C. S. Adams, J. D. Pritchard, and J. P. Shaffer, Journal of Physics B: Atomic, Molecular and Optical Physics 53, 012002 (2019).
https://doi.org/10.1088/1361-6455/ab52ef
[51] D. F. V. James, Phys. Rev. A 47, 1336 (1993).
https://doi.org/10.1103/PhysRevA.47.1336
[52] H. T. Dung, L. Knöll, and D.-G. Welsch, Phys. Rev. A 66, 063810 (2002).
https://doi.org/10.1103/PhysRevA.66.063810
[53] A. Asenjo-Garcia, J. D. Hood, D. E. Chang, and H. J. Kimble, Phys. Rev. A 95, 033818 (2017).
https://doi.org/10.1103/PhysRevA.95.033818
[54] H. Zoubi and H. Ritsch, Phys. Rev. A 83, 063831 (2011).
https://doi.org/10.1103/PhysRevA.83.063831
[55] R. T. Sutherland and F. Robicheaux, Phys. Rev. A 94, 013847 (2016).
https://doi.org/10.1103/PhysRevA.94.013847
[56] R. J. Bettles, S. A. Gardiner, and C. S. Adams, Phys. Rev. A 92, 063822 (2015).
https://doi.org/10.1103/PhysRevA.92.063822
[57] Y.-X. Zhang and K. Mølmer, Phys. Rev. Lett. 122, 203605 (2019).
https://doi.org/10.1103/PhysRevLett.122.203605
[58] A. Glicenstein, G. Ferioli, N. Šibalić, L. Brossard, I. Ferrier-Barbut, and A. Browaeys, Phys. Rev. Lett. 124, 253602 (2020).
https://doi.org/10.1103/PhysRevLett.124.253602
[59] A. Piñeiro Orioli and A. M. Rey, Phys. Rev. Lett. 123, 223601 (2019).
https://doi.org/10.1103/PhysRevLett.123.223601
[60] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).
https://doi.org/10.1103/PhysRevLett.84.5094
[61] E. Arimondo, Progress in Optics, 35, 257 (1996).
https://doi.org/10.1016/S0079-6638(08)70531-6
[62] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
https://doi.org/10.1103/RevModPhys.77.633
[63] M. T. Manzoni, M. Moreno-Cardoner, A. Asenjo-Garcia, J. V. Porto, A. V. Gorshkov, and D. E. Chang, New Journal of Physics 20, 083048 (2018).
https://doi.org/10.1088/1367-2630/aadb74
[64] C. R. Murray, and T. Pohl, Phys. Rev. X 7, 031007 (2017).
https://doi.org/10.1103/PhysRevX.7.031007
[65] K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993).
https://doi.org/10.1364/JOSAB.10.000524
[66] N. Stiesdal, H. Busche, K. Kleinbeck, J. Kumlin, M. G. Hansen, H. P. Büchler, and S. Hofferberth, Nature Communications 12, 4328 (2021).
https://doi.org/10.1038/s41467-021-24522-w
[67] A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, Phys. Rev. Lett. 71, 3095 (1993).
https://doi.org/10.1103/PhysRevLett.71.3095
[68] T. C. Ralph, I. Söllner, S. Mahmoodian, A. G. White, and P. Lohdal, Phys. Rev. Lett. 114, 173603 (1993).
https://doi.org/10.1103/PhysRevLett.114.173603
[69] D. Witthaut, M. D. Lukin, and A. S. Sørensen, EPL 97, 50007 (2015).
https://doi.org/10.1209/0295-5075/97/50007
[70] E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, ``Theory of cavity qed with 2d atomic arrays,'' (2020), arXiv:2006.01972.
https://doi.org/10.48550/arXiv.2006.01972
arXiv:arXiv:2006.01972
[71] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołlodyński, Progress in Optics, 60, 345 (2015).
https://doi.org/10.1016/bs.po.2015.02.003
Cited by
[1] Kyle E. Ballantine and Janne Ruostekoski, "Cooperative optical wavefront engineering with atomic arrays", Nanophotonics 10 7, 1901 (2021).
[2] N. Fayard, I. Ferrier-Barbut, A. Browaeys, and J.-J. Greffet, "Optical control of collective states in one-dimensional ordered atomic chains beyond the linear regime", Physical Review A 108 2, 023116 (2023).
[3] Yi Zhang, "Photon amplification and cavity-polariton-like generation in metallic nanoshells localized in optical cavity", Optics Express 31 4, 5640 (2023).
[4] Alexandra S. Sheremet, Mihail I. Petrov, Ivan V. Iorsh, Alexander V. Poshakinskiy, and Alexander N. Poddubny, "Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations", Reviews of Modern Physics 95 1, 015002 (2023).
[5] C. D. Parmee, K. E. Ballantine, and J. Ruostekoski, "Spontaneous symmetry breaking in frustrated triangular atom arrays due to cooperative light scattering", Physical Review Research 4 4, 043039 (2022).
[6] K. E. Ballantine and J. Ruostekoski, "Unidirectional absorption, storage, and emission of single photons in a collectively responding bilayer atomic array", Physical Review Research 4 3, 033200 (2022).
[7] C. D. Parmee and J. Ruostekoski, "Cooperative optical pattern formation in an ultrathin atomic layer", Optics Express 31 25, 42046 (2023).
[8] J. Talukdar and D. Blume, "Photon-induced dropletlike bound states in a one-dimensional qubit array", Physical Review A 108 2, 023702 (2023).
[9] Jan Kumlin, Christoph Braun, Christoph Tresp, Nina Stiesdal, Sebastian Hofferberth, and Asaf Paris-Mandoki, "Quantum optics with Rydberg superatoms", Journal of Physics Communications 7 5, 052001 (2023).
[10] Oriol Rubies-Bigorda, Stefan Ostermann, and Susanne F. Yelin, "Characterizing superradiant dynamics in atomic arrays via a cumulant expansion approach", Physical Review Research 5 1, 013091 (2023).
[11] Simon Panyella Pedersen, Lida Zhang, and Thomas Pohl, "Quantum nonlinear metasurfaces from dual arrays of ultracold atoms", Physical Review Research 5 1, L012047 (2023).
[12] Kritsana Srakaew, Pascal Weckesser, Simon Hollerith, David Wei, Daniel Adler, Immanuel Bloch, and Johannes Zeiher, "A subwavelength atomic array switched by a single Rydberg atom", Nature Physics 19 5, 714 (2023).
[13] Danil Kornovan, Alexander Poddubny, and Alexander Poshakinskiy, "Long persistent anticorrelations in few-qubit arrays", Physical Review A 108 3, 033707 (2023).
[14] Cai-Peng Shen, Jia-Qiang Chen, Xue-Feng Pan, Yu-Meng Ren, Xing-Liang Dong, Xin-Lei Hei, Yi-Fan Qiao, and Peng-Bo Li, "Tunable nonreciprocal photon correlations induced by directional quantum squeezing", Physical Review A 108 2, 023716 (2023).
[15] Yakov Solomons and Ephraim Shahmoon, "Multichannel waveguide QED with atomic arrays in free space", Physical Review A 107 3, 033709 (2023).
[16] Verena Scheil, Raphael Holzinger, Maria Moreno-Cardoner, and Helmut Ritsch, "Optical Properties of Concentric Nanorings of Quantum Emitters", Nanomaterials 13 5, 851 (2023).
[17] Nico S. Baßler, Michael Reitz, Kai Phillip Schmidt, and Claudiu Genes, "Linear optical elements based on cooperative subwavelength emitter arrays", Optics Express 31 4, 6003 (2023).
[18] Janne Ruostekoski, "Cooperative quantum-optical planar arrays of atoms", Physical Review A 108 3, 030101 (2023).
[19] M. Moreno-Cardoner, D. Goncalves, and D. E. Chang, "Quantum Nonlinear Optics Based on Two-Dimensional Rydberg Atom Arrays", Physical Review Letters 127 26, 263602 (2021).
[20] Oriol Rubies-Bigorda, Valentin Walther, Taylor L. Patti, and Susanne F. Yelin, "Photon control and coherent interactions via lattice dark states in atomic arrays", Physical Review Research 4 1, 013110 (2022).
[21] K. E. Ballantine and J. Ruostekoski, "Quantum Single-Photon Control, Storage, and Entanglement Generation with Planar Atomic Arrays", PRX Quantum 2 4, 040362 (2021).
[22] Yakov Solomons and Ephraim Shahmoon, "Multi-channel waveguide QED with atomic arrays in free space", arXiv:2111.11515, (2021).
[23] Christopher Fechisin, Kunal Sharma, Przemyslaw Bienias, Steven L. Rolston, J. V. Porto, Michael J. Gullans, and Alexey V. Gorshkov, "Quantum Non-Demolition Photon Counting in a 2d Rydberg Atom Array", arXiv:2210.10798, (2022).
[24] Valentin Walther, Lida Zhang, Susanne F. Yelin, and Thomas Pohl, "Nonclassical light from finite-range interactions in a two-dimensional quantum mirror", Physical Review B 105 7, 075307 (2022).
[25] Ole A. Iversen and Thomas Pohl, "Self-ordering of individual photons in waveguide QED and Rydberg-atom arrays", Physical Review Research 4 2, 023002 (2022).
[26] Li-Ping Yang and Dazhi Xu, "Quantum theory of photonic vortices and quantum statistics of twisted photons", Physical Review A 105 2, 023723 (2022).
The above citations are from Crossref's cited-by service (last updated successfully 2023-12-07 03:08:34) and SAO/NASA ADS (last updated successfully 2023-12-07 03:08:37). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.