Photon-photon interactions in Rydberg-atom arrays

Lida Zhang1, Valentin Walther1,2, Klaus Mølmer1, and Thomas Pohl1

1Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
2ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We investigate the interaction of weak light fields with two-dimensional lattices of atoms with high lying atomic Rydberg states. This system features different interactions that act on disparate length scales, from zero-range defect scattering of atomic excitations and finite-range dipole exchange processes to long-range Rydberg-state interactions, which span the entire array and can block multiple Rydberg excitations. Analyzing their interplay, we identify conditions that yield a nonlinear quantum mirror which coherently splits incident fields into correlated photon-pairs in a single transverse mode, while transmitting single photons unaffected. In particular, we find strong anti-bunching of the transmitted light with equal-time pair correlations that decrease exponentially with an increasing range of the Rydberg blockade. Such strong photon-photon interactions in the absence of photon losses open up promising avenues for the generation and manipulation of quantum light, and the exploration of many-body phenomena with interacting photons.

► BibTeX data

► References

[1] D. E. Chang, V. Vuletić, and M. D. Lukin, Nature Photonics 8, 685 (2014).

[2] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature 436, 87 (2005).

[3] J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, Nature Photonics 8, 965 (2014).

[4] A. Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015).

[5] S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, Phys. Rev. X 8, 011018 (2018).

[6] D. O'Shea, C. Junge, J. Volz, and A. Rauschenbeutel, Phys. Rev. Lett. 111, 193601 (2013).

[7] A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).

[8] J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).

[9] T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).

[10] J. Petersen, J. Volz, and A. Rauschenbeutel, Science 346, 67 (2014).

[11] P. Lodahl, S. Mahmoodian, and S. Stobbe, Rev. Mod. Phys. 87, 347 (2015).

[12] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble, Rev. Mod. Phys. 90, 031002 (2018).

[13] M. Noaman, M. Langbecker, and P. Windpassinger, Opt. Lett. 43, 3925 (2018).

[14] S.-P. Yu, J. A. Muniz, C.-L. Hung, and H. J. Kimble, Proceedings of the National Academy of Sciences 116, 12743 (2019).

[15] A. S. Prasad, J. Hinney, S. Mahmoodian, K. Hammerer, S. Rind, P. Schneeweiss, A. S. Sørensen, J. Volz, and A. Rauschenbeutel, Nature Photonics 14, 719 (2020).

[16] J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Phys. Rev. Lett. 105, 193603 (2010).

[17] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Nature 488, 57 (2012).

[18] J. D. Thompson, T. L. Nicholson, Q.-Y. Liang, S. H. Cantu, A. V. Venkatramani, S. Choi, I. A. Fedorov, D. Viscor, T. Pohl, M. D. Lukin, and V. Vuletić, Nature 542, 206 (2017).

[19] A. Paris-Mandoki, C. Braun, J. Kumlin, C. Tresp, I. Mirgorodskiy, F. Christaller, H. P. Büchler, and S. Hofferberth, Phys. Rev. X 7, 041010 (2017).

[20] C. Murray and T. Pohl, Advances In Atomic, Molecular, and Optical Physics, 65, 321 (2016).

[21] O. Firstenberg, C. S. Adams, and S. Hofferberth, J. Phys B 49, 152003 (2016).

[22] S. Baur, D. Tiarks, G. Rempe, and S. Dürr, Phys. Rev. Lett. 112, 073901 (2014).

[23] H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Hofferberth, Phys. Rev. Lett. 113, 053601 (2014).

[24] D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, Phys. Rev. Lett. 113, 053602 (2014).

[25] D. Tiarks, S. Schmidt-Eberle, T. Stolz, G. Rempe, and S. Dürr, Nature Physics 15, 124 (2019).

[26] A. V. Gorshkov, R. Nath, and T. Pohl, Phys. Rev. Lett. 110, 153601 (2013).

[27] C. R. Murray, I. Mirgorodskiy, C. Tresp, C. Braun, A. Paris-Mandoki, A. V. Gorshkov, S. Hofferberth, and T. Pohl, Phys. Rev. Lett. 120, 113601 (2018).

[28] C. R. Murray, A. V. Gorshkov, and T. Pohl, New Journal of Physics 18, 092001 (2016).

[29] J. Otterbach, M. Moos, D. Muth, and M. Fleischhauer, Phys. Rev. Lett. 111, 113001 (2013).

[30] E. Zeuthen, M. J. Gullans, M. F. Maghrebi, and A. V. Gorshkov, Phys. Rev. Lett. 119, 043602 (2017).

[31] P. Bienias, J. Douglas, A. Paris-Mandoki, P. Titum, I. Mirgorodskiy, C. Tresp, E. Zeuthen, M. J. Gullans, M. Manzoni, S. Hofferberth, D. Chang, and A. V. Gorshkov, Phys. Rev. Research 2, 033049 (2020).

[32] G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, Phys. Rev. Lett. 117, 243601 (2016).

[33] J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 119, 023603 (2017).

[34] R. J. Bettles, J. c. v. Minář, C. S. Adams, I. Lesanovsky, and B. Olmos, Phys. Rev. A 96, 041603 (2017).

[35] P.-O. Guimond, A. Grankin, D. V. Vasilyev, B. Vermersch, and P. Zoller, Phys. Rev. Lett. 122, 093601 (2019).

[36] K. E. Ballantine and J. Ruostekoski, Phys. Rev. Lett. 125, 143604 (2020).

[37] R. J. Bettles, S. A. Gardiner, and C. S. Adams, Phys. Rev. Lett. 116, 103602 (2016).

[38] E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, Phys. Rev. Lett. 118, 113601 (2017).

[39] J. Rui, D. Wei, A. Rubio-Abadal, S. Hollerith, J. Zeiher, D. M. Stamper-Kurn, C. Gross, and I. Bloch, Nature 583, 369 (2020).

[40] A. Grankin, P. O. Guimond, D. V. Vasilyev, B. Vermersch, and P. Zoller, Phys. Rev. A 98, 043825 (2018).

[41] R. Bekenstein, I. Pikovski, H. Pichler, E. Shahmoon, S. F. Yelin, and M. D. Lukin, Nature Physics 16, 676 (2020).

[42] A. Cidrim, T. S. do Espirito Santo, J. Schachenmayer, R. Kaiser, and R. Bachelard, Phys. Rev. Lett. 125, 073601 (2020).

[43] L. A. Williamson, M. O. Borgh, and J. Ruostekoski, Phys. Rev. Lett. 125, 073602 (2020).

[44] M. Moreno-Cardoner, D. Goncalves, and D. E. Chang, Phys. Rev. Lett. 127, 263602 (2021).

[45] N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104, 195302 (2010).

[46] J. Zeiher, P. Schauß, S. Hild, T. Macrì, I. Bloch, and C. Gross, Phys. Rev. X 5, 031015 (2015).

[47] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).

[48] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001).

[49] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).

[50] C. S. Adams, J. D. Pritchard, and J. P. Shaffer, Journal of Physics B: Atomic, Molecular and Optical Physics 53, 012002 (2019).

[51] D. F. V. James, Phys. Rev. A 47, 1336 (1993).

[52] H. T. Dung, L. Knöll, and D.-G. Welsch, Phys. Rev. A 66, 063810 (2002).

[53] A. Asenjo-Garcia, J. D. Hood, D. E. Chang, and H. J. Kimble, Phys. Rev. A 95, 033818 (2017).

[54] H. Zoubi and H. Ritsch, Phys. Rev. A 83, 063831 (2011).

[55] R. T. Sutherland and F. Robicheaux, Phys. Rev. A 94, 013847 (2016).

[56] R. J. Bettles, S. A. Gardiner, and C. S. Adams, Phys. Rev. A 92, 063822 (2015).

[57] Y.-X. Zhang and K. Mølmer, Phys. Rev. Lett. 122, 203605 (2019).

[58] A. Glicenstein, G. Ferioli, N. Šibalić, L. Brossard, I. Ferrier-Barbut, and A. Browaeys, Phys. Rev. Lett. 124, 253602 (2020).

[59] A. Piñeiro Orioli and A. M. Rey, Phys. Rev. Lett. 123, 223601 (2019).

[60] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).

[61] E. Arimondo, Progress in Optics, 35, 257 (1996).

[62] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

[63] M. T. Manzoni, M. Moreno-Cardoner, A. Asenjo-Garcia, J. V. Porto, A. V. Gorshkov, and D. E. Chang, New Journal of Physics 20, 083048 (2018).

[64] C. R. Murray, and T. Pohl, Phys. Rev. X 7, 031007 (2017).

[65] K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993).

[66] N. Stiesdal, H. Busche, K. Kleinbeck, J. Kumlin, M. G. Hansen, H. P. Büchler, and S. Hofferberth, Nature Communications 12, 4328 (2021).

[67] A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, Phys. Rev. Lett. 71, 3095 (1993).

[68] T. C. Ralph, I. Söllner, S. Mahmoodian, A. G. White, and P. Lohdal, Phys. Rev. Lett. 114, 173603 (1993).

[69] D. Witthaut, M. D. Lukin, and A. S. Sørensen, EPL 97, 50007 (2015).

[70] E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, ``Theory of cavity qed with 2d atomic arrays,'' (2020), arXiv:2006.01972.

[71] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołlodyński, Progress in Optics, 60, 345 (2015).

Cited by

[1] Kyle E. Ballantine and Janne Ruostekoski, "Cooperative optical wavefront engineering with atomic arrays", Nanophotonics 10 7, 1901 (2021).

[2] N. Fayard, I. Ferrier-Barbut, A. Browaeys, and J.-J. Greffet, "Optical control of collective states in one-dimensional ordered atomic chains beyond the linear regime", Physical Review A 108 2, 023116 (2023).

[3] Yi Zhang, "Photon amplification and cavity-polariton-like generation in metallic nanoshells localized in optical cavity", Optics Express 31 4, 5640 (2023).

[4] Alexandra S. Sheremet, Mihail I. Petrov, Ivan V. Iorsh, Alexander V. Poshakinskiy, and Alexander N. Poddubny, "Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations", Reviews of Modern Physics 95 1, 015002 (2023).

[5] C. D. Parmee, K. E. Ballantine, and J. Ruostekoski, "Spontaneous symmetry breaking in frustrated triangular atom arrays due to cooperative light scattering", Physical Review Research 4 4, 043039 (2022).

[6] K. E. Ballantine and J. Ruostekoski, "Unidirectional absorption, storage, and emission of single photons in a collectively responding bilayer atomic array", Physical Review Research 4 3, 033200 (2022).

[7] C. D. Parmee and J. Ruostekoski, "Cooperative optical pattern formation in an ultrathin atomic layer", Optics Express 31 25, 42046 (2023).

[8] J. Talukdar and D. Blume, "Photon-induced dropletlike bound states in a one-dimensional qubit array", Physical Review A 108 2, 023702 (2023).

[9] Jan Kumlin, Christoph Braun, Christoph Tresp, Nina Stiesdal, Sebastian Hofferberth, and Asaf Paris-Mandoki, "Quantum optics with Rydberg superatoms", Journal of Physics Communications 7 5, 052001 (2023).

[10] Oriol Rubies-Bigorda, Stefan Ostermann, and Susanne F. Yelin, "Characterizing superradiant dynamics in atomic arrays via a cumulant expansion approach", Physical Review Research 5 1, 013091 (2023).

[11] Simon Panyella Pedersen, Lida Zhang, and Thomas Pohl, "Quantum nonlinear metasurfaces from dual arrays of ultracold atoms", Physical Review Research 5 1, L012047 (2023).

[12] Kritsana Srakaew, Pascal Weckesser, Simon Hollerith, David Wei, Daniel Adler, Immanuel Bloch, and Johannes Zeiher, "A subwavelength atomic array switched by a single Rydberg atom", Nature Physics 19 5, 714 (2023).

[13] Danil Kornovan, Alexander Poddubny, and Alexander Poshakinskiy, "Long persistent anticorrelations in few-qubit arrays", Physical Review A 108 3, 033707 (2023).

[14] Cai-Peng Shen, Jia-Qiang Chen, Xue-Feng Pan, Yu-Meng Ren, Xing-Liang Dong, Xin-Lei Hei, Yi-Fan Qiao, and Peng-Bo Li, "Tunable nonreciprocal photon correlations induced by directional quantum squeezing", Physical Review A 108 2, 023716 (2023).

[15] Yakov Solomons and Ephraim Shahmoon, "Multichannel waveguide QED with atomic arrays in free space", Physical Review A 107 3, 033709 (2023).

[16] Verena Scheil, Raphael Holzinger, Maria Moreno-Cardoner, and Helmut Ritsch, "Optical Properties of Concentric Nanorings of Quantum Emitters", Nanomaterials 13 5, 851 (2023).

[17] Nico S. Baßler, Michael Reitz, Kai Phillip Schmidt, and Claudiu Genes, "Linear optical elements based on cooperative subwavelength emitter arrays", Optics Express 31 4, 6003 (2023).

[18] Janne Ruostekoski, "Cooperative quantum-optical planar arrays of atoms", Physical Review A 108 3, 030101 (2023).

[19] M. Moreno-Cardoner, D. Goncalves, and D. E. Chang, "Quantum Nonlinear Optics Based on Two-Dimensional Rydberg Atom Arrays", Physical Review Letters 127 26, 263602 (2021).

[20] Oriol Rubies-Bigorda, Valentin Walther, Taylor L. Patti, and Susanne F. Yelin, "Photon control and coherent interactions via lattice dark states in atomic arrays", Physical Review Research 4 1, 013110 (2022).

[21] K. E. Ballantine and J. Ruostekoski, "Quantum Single-Photon Control, Storage, and Entanglement Generation with Planar Atomic Arrays", PRX Quantum 2 4, 040362 (2021).

[22] Yakov Solomons and Ephraim Shahmoon, "Multi-channel waveguide QED with atomic arrays in free space", arXiv:2111.11515, (2021).

[23] Christopher Fechisin, Kunal Sharma, Przemyslaw Bienias, Steven L. Rolston, J. V. Porto, Michael J. Gullans, and Alexey V. Gorshkov, "Quantum Non-Demolition Photon Counting in a 2d Rydberg Atom Array", arXiv:2210.10798, (2022).

[24] Valentin Walther, Lida Zhang, Susanne F. Yelin, and Thomas Pohl, "Nonclassical light from finite-range interactions in a two-dimensional quantum mirror", Physical Review B 105 7, 075307 (2022).

[25] Ole A. Iversen and Thomas Pohl, "Self-ordering of individual photons in waveguide QED and Rydberg-atom arrays", Physical Review Research 4 2, 023002 (2022).

[26] Li-Ping Yang and Dazhi Xu, "Quantum theory of photonic vortices and quantum statistics of twisted photons", Physical Review A 105 2, 023723 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2023-12-07 03:08:34) and SAO/NASA ADS (last updated successfully 2023-12-07 03:08:37). The list may be incomplete as not all publishers provide suitable and complete citation data.