Direct detection of quantum non-Gaussian light from a dispersively coupled single atom

Jitendra K. Verma, Lukáš Lachman, and Radim Filip

Department of Optics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Many applications in quantum communication, sensing and computation need provably quantum non-Gaussian light. Recently such light, witnessed by a negative Wigner function, has been estimated using homodyne tomography from a single atom dispersively coupled to a high-finesse cavity. This opens an investigation of quantum non-Gaussian light for many experiments with atoms and solid-state emitters. However, at their early stage, an atom or emitter in a cavity system with different channels to the environment and additional noise are insufficient to produce negative Wigner functions. Moreover, homodyne detection is frequently challenging for such experiments. We analyse these issues and prove that such cavities can be used to emit quantum non-Gaussian light employing single-photon detection in the Hanbury Brown and Twiss configuration and quantum non-Gaussianity criteria suitable for this measurement. We investigate in detail cases of considerable cavity leakage when the negativity of the Wigner function disappears completely. Advantageously, quantum non-Gaussian light can be still conclusively proven for a large set of the cavity parameters at the cost of overall measurement time, even if noise is present.

The quantum non-Gaussianity confirms processes producing light beyond the mixtures of Gaussian states. It is essential for applications in quantum sensing, communication and computing. Therefore exposing the quantum non-Gaussianity in realistic physical platforms is an important step that stimulates quantum technologies. We analyze the capability of dispersive coupling of an atom and optical field inside a cavity to manifest the quantum non-Gaussian light directly detectable by simple photon detectors. This manifestation remains feasible even for cavities operating in the weak coupling regime, which does not allow detection of the negative Wigner function. This result extends substantially related technological platforms where the quantum non-Gaussianity is detectable.

► BibTeX data

► References

[1] I. Aharonovich, D. Englund, and M. Toth. Solid-state single-photon emitters. Nature Photonics, 10 (10): 631–641, 2016. 10.1038/​nphoton.2016.186.

[2] U. L. Andersen, J. S. Neergaard-Nielsen, P. van Loock, and A. Furusawa. Hybrid discrete- and continuous-variable quantum information. Nature Physics, 11 (9): 713–719, 2015. 10.1038/​nphys3410.

[3] M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. Lee, J. Song, S. Stobbe, and P. Lodahl. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Physical Review Letters, 113 (9): 093603, 2014. 10.1103/​physrevlett.113.093603.

[4] A. Aspuru-Guzik and P. Walther. Photonic quantum simulators. Nature Physics, 8 (4): 285–291, 2012. 10.1038/​nphys2253.

[5] R. H. Brown and R. Twiss. LXXIV. a new type of interferometer for use in radio astronomy. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45 (366): 663–682, 1954. 10.1080/​14786440708520475.

[6] X.-L. Chu, S. Götzinger, and V. Sandoghdar. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light. Nature Photonics, 11 (1): 58–62, 2016. 10.1038/​nphoton.2016.236.

[7] S. Daiss, S. Welte, B. Hacker, L. Li, and G. Rempe. Single-photon distillation via a photonic parity measurement using cavity QED. Physical Review Letters, 122 (13): 133603, 2019. 10.1103/​physrevlett.122.133603.

[8] X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar. Physical Review Letters, 116 (2): 020401, 2016. 10.1103/​physrevlett.116.020401.

[9] L.-M. Duan and H. J. Kimble. Scalable photonic quantum computation through cavity-assisted interactions. Physical Review Letters, 92 (12): 127902, 2004. 10.1103/​physrevlett.92.127902.

[10] R. Filip and L. Mišta. Detecting quantum states with a positive Wigner function beyond mixtures of Gaussian states. Physical Review Letters, 106 (20): 200401, 2011. 10.1103/​physrevlett.106.200401.

[11] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta, and J. P. Home. Encoding a qubit in a trapped-ion mechanical oscillator. Nature, 566 (7745): 513–517, 2019. 10.1038/​s41586-019-0960-6.

[12] M. G. Genoni, M. L. Palma, T. Tufarelli, S. Olivares, M. S. Kim, and M. G. A. Paris. Detecting quantum non-Gaussianity via the Wigner function. Physical Review A, 87 (6), jun 2013. 10.1103/​physreva.87.062104.

[13] L. Ginés, C. Pepe, J. Gonzales, N. Gregersen, S. Höfling, C. Schneider, and A. Predojević. Time-bin entangled photon pairs from quantum dots embedded in a self-aligned cavity. Optics Express, 29 (3): 4174, 2021. 10.1364/​oe.411021.

[14] H. Goto and K. Ichimura. Quantum trajectory simulation of controlled phase-flip gates using the vacuum Rabi splitting. Physical Review A, 72 (5): 054301, 2005. 10.1103/​physreva.72.054301.

[15] H. Goto, S. Mizukami, Y. Tokunaga, and T. Aoki. Figure of merit for single-photon generation based on cavity quantum electrodynamics. Physical Review A, 99 (5): 053843, 2019. 10.1103/​physreva.99.053843.

[16] P. Grangier, G. Roger, and A. Aspect. Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences. Europhysics Letters (EPL), 1 (4): 173–179, 1986. 10.1209/​0295-5075/​1/​4/​004.

[17] B. Hacker, S. Welte, S. Daiss, A. Shaukat, S. Ritter, L. Li, and G. Rempe. Deterministic creation of entangled atom–light Schrödinger-cat states. Nature Photonics, 13 (2): 110–115, 2019. 10.1038/​s41566-018-0339-5.

[18] D. B. Higginbottom, L. Slodička, G. Araneda, L. Lachman, R. Filip, M. Hennrich, and R. Blatt. Pure single photons from a trapped atom source. New Journal of Physics, 18 (9): 093038, 2016. 10.1088/​1367-2630/​18/​9/​093038.

[19] D. Huber, M. Reindl, Y. Huo, H. Huang, J. S. Wildmann, O. G. Schmidt, A. Rastelli, and R. Trotta. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nature Communications, 8 (1), 2017. 10.1038/​ncomms15506.

[20] R. Hudson. When is the wigner quasi-probability density non-negative? Reports on Mathematical Physics, 6 (2): 249–252, 1974. 10.1016/​0034-4877(74)90007-x.

[21] J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, and A. Aspuru-Guzik. Boson sampling for molecular vibronic spectra. Nature Photonics, 9 (9): 615–620, 2015. 10.1038/​nphoton.2015.153.

[22] L. Lachman and R. Filip. Robustness of quantum nonclassicality and non-Gaussianity of single-photon states in attenuating channels. Physical Review A, 88 (6): 063841, 2013. 10.1103/​physreva.88.063841.

[23] L. Lachman and R. Filip. Quantum non-Gaussianity from a large ensemble of single photon emitters. Optics Express, 24 (24): 27352, 2016. 10.1364/​oe.24.027352.

[24] L. Lachman, I. Straka, J. Hloušek, M. Ježek, and R. Filip. Faithful hierarchy of genuine n -photon quantum non-Gaussian light. Physical Review Letters, 123 (4), 2019. 10.1103/​physrevlett.123.043601.

[25] M. Lasota, R. Filip, and V. C. Usenko. Sufficiency of quantum non-Gaussianity for discrete-variable quantum key distribution over noisy channels. Physical Review A, 96 (1): 012301, 2017. 10.1103/​physreva.96.012301.

[26] P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 430 (7000): 654–657, 2004. 10.1038/​nature02772.

[27] P. Lodahl, S. Mahmoodian, and S. Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Reviews of Modern Physics, 87 (2): 347–400, 2015. 10.1103/​revmodphys.87.347.

[28] A. I. Lvovsky and M. G. Raymer. Continuous-variable optical quantum-state tomography. Reviews of Modern Physics, 81 (1): 299–332, 2009. 10.1103/​revmodphys.81.299.

[29] O. Morin, M. Körber, S. Langenfeld, and G. Rempe. Deterministic shaping and reshaping of single-photon temporal wave functions. Physical Review Letters, 123 (13): 133602, 2019. 10.1103/​physrevlett.123.133602.

[30] D. Najer, I. Söllner, P. Sekatski, V. Dolique, M. C. Löbl, D. Riedel, R. Schott, S. Starosielec, S. R. Valentin, A. D. Wieck, N. Sangouard, A. Ludwig, and R. J. Warburton. A gated quantum dot strongly coupled to an optical microcavity. Nature, 575 (7784): 622–627, 2019. 10.1038/​s41586-019-1709-y.

[31] J. L. O'Brien, A. Furusawa, and J. Vučković. Photonic quantum technologies. Nature Photonics, 3 (12): 687–695, 2009. 10.1038/​nphoton.2009.229.

[32] M. L. Palma, J. Stammers, M. G. Genoni, T. Tufarelli, S. Olivares, M. S. Kim, and M. G. A. Paris. Detecting quantum non-Gaussianity of noisy Schrödinger cat states. Physica Scripta, T160: 014035, apr 2014. 10.1088/​0031-8949/​2014/​t160/​014035.

[33] E. Peter, P. Senellart, D. Martrou, A. Lemaı̂tre, J. Hours, J. M. Gérard, and J. Bloch. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Physical Review Letters, 95 (6): 067401, 2005. 10.1103/​physrevlett.95.067401.

[34] M. Prilmüller, T. Huber, M. Müller, P. Michler, G. Weihs, and A. Predojević. Hyperentanglement of photons emitted by a quantum dot. Physical Review Letters, 121 (11): 110503, 2018. 10.1103/​physrevlett.121.110503.

[35] A. Reiserer and G. Rempe. Cavity-based quantum networks with single atoms and optical photons. Reviews of Modern Physics, 87 (4): 1379–1418, 2015. 10.1103/​revmodphys.87.1379.

[36] A. Royer. Wigner function as the expectation value of a parity operator. Physical Review A, 15 (2): 449–450, feb 1977. 10.1103/​physreva.15.449.

[37] N. Somaschi, V. Giesz, L. D. Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, C. Gómez, I. Sagnes, N. D. Lanzillotti-Kimura, A. Lemaítre, A. Auffeves, A. G. White, L. Lanco, and P. Senellart. Near-optimal single-photon sources in the solid state. Nature Photonics, 10 (5): 340–345, 2016. 10.1038/​nphoton.2016.23.

[38] I. Straka, A. Predojević, T. Huber, L. Lachman, L. Butschek, M. Miková, M. Mičuda, G. S. Solomon, G. Weihs, M. Ježek, and R. Filip. Quantum non-Gaussian depth of single-photon states. Physical Review Letters, 113 (22): 223603, 2014. 10.1103/​physrevlett.113.223603.

[39] S. Thomas and P. Senellart. The race for the ideal single-photon source is on. Nature Nanotechnology, 16 (4): 367–368, jan 2021. 10.1038/​s41565-021-00851-1.

[40] K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki. Photon subtracted squeezed states generated with periodically poled KTiOPO_4. Optics Express, 15 (6): 3568, 2007. 10.1364/​oe.15.003568.

[41] B. Wang and L.-M. Duan. Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction. Physical Review A, 72 (2): 022320, 2005. 10.1103/​physreva.72.022320.

[42] X.-J. Wang, S.-J. Yang, P.-F. Sun, B. Jing, J. Li, M.-T. Zhou, X.-H. Bao, and J.-W. Pan. Cavity-enhanced atom-photon entanglement with subsecond lifetime. Physical Review Letters, 126 (9): 090501, 2021. 10.1103/​physrevlett.126.090501.

[43] F. Wolf, C. Shi, J. C. Heip, M. Gessner, L. Pezzè, A. Smerzi, M. Schulte, K. Hammerer, and P. O. Schmidt. Motional Fock states for quantum-enhanced amplitude and phase measurements with trapped ions. Nature Communications, 10 (1), 2019. 10.1038/​s41467-019-10576-4.

[44] P. Zapletal and R. Filip. Multi-copy quantifiers for single-photon states. Scientific Reports, 7 (1), 2017. 10.1038/​s41598-017-01333-y.

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2022-05-29 03:26:56). On SAO/NASA ADS no data on citing works was found (last attempt 2022-05-29 03:26:57).