Bounding the quantum capacity with flagged extensions

Farzad Kianvash1, Marco Fanizza1,2, and Vittorio Giovannetti1

1NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, I-56126 Pisa, Italy
2Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona) Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

In this article we consider flagged extensions of convex combination of quantum channels, and find general sufficient conditions for the degradability of the flagged extension. An immediate application is a bound on the quantum $Q$ and private $P$ capacities of any channel being a mixture of a unitary map and another channel, with the probability associated to the unitary component being larger than $1/2$. We then specialize our sufficient conditions to flagged Pauli channels, obtaining a family of upper bounds on quantum and private capacities of Pauli channels. In particular, we establish new state-of-the-art upper bounds on the quantum and private capacities of the depolarizing channel, BB84 channel and generalized amplitude damping channel. Moreover, the flagged construction can be naturally applied to tensor powers of channels with less restricting degradability conditions, suggesting that better upper bounds could be found by considering a larger number of channel uses.

Quantum information can be protected from noise by encoding it in logical qubits. For several fundamental noise models in discrete variables, such as thermal attenuation and depolarizing noise, the optimal ratio of logical versus physical qubits (quantum capacity) is not known. We improve the upper bounds on the quantum capacity by constructing less noisy channels, where information on the noise acting is encoded in an auxiliary quantum register, and for which the quantum capacity can be computed.

► BibTeX data

► References

[1] C. Adamiand N. J. Cerf ``von Neumann capacity of noisy quantum channels'' Physical Review A 56, 3470-3483 (1997).
https:/​/​doi.org/​10.1103/​PhysRevA.56.3470

[2] D. M. Appleby ``Symmetric informationally complete–positive operator valued measures and the extended Clifford group'' Journal of Mathematical Physics 46, 052107 (2005).
https:/​/​doi.org/​10.1063/​1.1896384

[3] Charles H Bennettand Gilles Brassard ``Quantum cryptography: Public key distribution and coin tossing'' Theor. Comput. Sci. 560, 7–11 (2014).
https:/​/​doi.org/​10.1016/​j.tcs.2014.05.025
http:/​/​www.elsevier.com/​locate/​tcs

[4] H. Barnum, E. Knill, and M.A. Nielsen, ``On quantum fidelities and channel capacities'' IEEE Transactions on Information Theory 46, 1317–1329 (2000).
https:/​/​doi.org/​10.1109/​18.850671

[5] Johannes Bauschand Felix Leditzky ``Quantum codes from neural networks'' New Journal of Physics 22, 023005 (2020).
https:/​/​doi.org/​10.1088/​1367-2630/​ab6cdd
arXiv:1806.08781

[6] Johannes Bauschand Felix Leditzky ``Error thresholds for arbitrary pauli noise'' SIAM Journal on Computing 50, 1410–1460 (2021).
https:/​/​doi.org/​10.1137/​20M1337375
arXiv:1910.00471

[7] Dagmar Bruß, David P. DiVincenzo, Artur Ekert, Christopher A. Fuchs, Chiara Macchiavello, and John A. Smolin, ``Optimal universal and state-dependent quantum cloning'' Physical Review A 57, 2368–2378 (1998).
https:/​/​doi.org/​10.1103/​PhysRevA.57.2368

[8] Luca Chirolliand Guido Burkard ``Decoherence in solid-state qubits'' Advances in Physics 57, 225–285 (2008).
https:/​/​doi.org/​10.1080/​00018730802218067
arXiv:0809.4716

[9] Nicolas J. Cerf ``Pauli Cloning of a Quantum Bit'' Physical Review Letters 84, 4497–4500 (2000).
https:/​/​doi.org/​10.1103/​PhysRevLett.84.4497

[10] Toby S. Cubitt, Mary Beth Ruskai, and Graeme Smith, ``The structure of degradable quantum channels'' Journal of Mathematical Physics 49 (2008).
https:/​/​doi.org/​10.1063/​1.2953685
arXiv:0802.1360

[11] Toby Cubitt, David Elkouss, William Matthews, Maris Ozols, David Pérez-García, and Sergii Strelchuk, ``Unbounded number of channel uses may be required to detect quantum capacity'' Nature Communications 6, 6739 (2015).
https:/​/​doi.org/​10.1038/​ncomms7739
arXiv:1408.5115
http:/​/​www.nature.com/​articles/​ncomms7739

[12] N. Cai, A. Winter, and R. W. Yeung, ``Quantum privacy and quantum wiretap channels'' Problems of Information Transmission 40, 318–336 (2004).
https:/​/​doi.org/​10.1007/​s11122-005-0002-x

[13] Niel de Beaudrap ``A linearized stabilizer formalism for systems of finite dimension'' Quantum Information and Computation 13 (2013).
https:/​/​doi.org/​10.26421/​qic13.1-2-6

[14] Igor Devetak ``The Private Classical Capacity and Quantum Capacity of a Quantum Channel'' IEEE Transactions on Information Theory 51, 44–55 (2005).
https:/​/​doi.org/​10.1109/​TIT.2004.839515
http:/​/​ieeexplore.ieee.org/​document/​1377491/​

[15] I. Devetakand P. W. Shor ``The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information'' Communications in Mathematical Physics 256, 287–303 (2005).
https:/​/​doi.org/​10.1007/​s00220-005-1317-6

[16] David P. DiVincenzo, Peter W. Shor, and John A. Smolin, ``Quantum-channel capacity of very noisy channels'' Physical Review A 57, 830–839 (1998).
https:/​/​doi.org/​10.1103/​PhysRevA.57.830

[17] Marco Fanizza, Farzad Kianvash, and Vittorio Giovannetti, ``Quantum Flags and New Bounds on the Quantum Capacity of the Depolarizing Channel'' Physical Review Letters 125, 020503 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.020503
arXiv:1911.01977

[18] Marco Fanizza, Farzad Kianvash, and Vittorio Giovannetti, ``Estimating Quantum and Private Capacities of Gaussian Channels via Degradable Extensions'' Physical Review Letters 127, 210501 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.127.210501
arXiv:2103.09569

[19] Jesse Fernand K. Birgitta Whaley ``Lower bounds on the nonzero capacity of Pauli channels'' Physical Review A 78, 062335 (2008).
https:/​/​doi.org/​10.1103/​PhysRevA.78.062335
arXiv:0708.1597

[20] D. Grossand J. Eisert ``Quantum margulis expanders'' Quantum Information and Computation 8, 0722–0733 (2008).
https:/​/​doi.org/​10.26421/​qic8.8-9-3
arXiv:0710.0651

[21] Vittorio Giovannettiand Rosario Fazio ``Information-capacity description of spin-chain correlations'' Physical Review A 71, 032314 (2005).
https:/​/​doi.org/​10.1103/​PhysRevA.71.032314

[22] David Gross, Sepehr Nezami, and Michael Walter, ``Schur–Weyl Duality for the Clifford Group with Applications: Property Testing, a Robust Hudson Theorem, and de Finetti Representations'' Communications in Mathematical Physics 385, 1325–1393 (2021).
https:/​/​doi.org/​10.1007/​s00220-021-04118-7
arXiv:1712.08628

[23] Raúl García-Patrón, Stefano Pirandola, Seth Lloyd, and Jeffrey H. Shapiro, ``Reverse coherent information'' Physical Review Letters 102, 210501 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.102.210501

[24] D. Gross ``Hudson's theorem for finite-dimensional quantum systems'' Journal of Mathematical Physics 47, 122107 (2006).
https:/​/​doi.org/​10.1063/​1.2393152

[25] M. B. Hastings ``Superadditivity of communication capacity using entangled inputs'' Nature Physics 5, 255–257 (2009).
https:/​/​doi.org/​10.1038/​nphys1224
arXiv:0809.3972

[26] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki, ``General teleportation channel, singlet fraction, and quasidistillation'' Physical Review A 60, 1888–1898 (1999).
https:/​/​doi.org/​10.1103/​PhysRevA.60.1888

[27] Alexander S. Holevo ``Quantum Systems, Channels, Information'' De Gruyter (2019).
https:/​/​doi.org/​10.1515/​9783110642490

[28] Sumeet Khatri, Kunal Sharma, and Mark M. Wilde, ``Information-theoretic aspects of the generalized amplitude-damping channel'' Physical Review A 102 (2020).
https:/​/​doi.org/​10.1103/​PhysRevA.102.012401
arXiv:1903.07747

[29] Felix Leditzky, Nilanjana Datta, and Graeme Smith, ``Useful States and Entanglement Distillation'' IEEE Transactions on Information Theory 64, 4689–4708 (2018).
https:/​/​doi.org/​10.1109/​TIT.2017.2776907
arXiv:1701.03081

[30] Ke Li, Andreas Winter, Xubo Zou, and Guangcan Guo, ``Private capacity of quantum channels is not additive'' Physical Review Letters 103 (2009).
https:/​/​doi.org/​10.1103/​PhysRevLett.103.120501
arXiv:0903.4308

[31] Seth Lloyd ``Capacity of the noisy quantum channel'' Physical Review A 55, 1613–1622 (1997).
https:/​/​doi.org/​10.1103/​PhysRevA.55.1613

[32] Felix Leditzky, Debbie Leung, and Graeme Smith, ``Dephrasure Channel and Superadditivity of Coherent Information'' Physical Review Letters 121, 160501 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.121.160501
arXiv:1806.08327

[33] Felix Leditzky, Debbie Leung, and Graeme Smith, ``Quantum and Private Capacities of Low-Noise Channels'' Physical Review Letters 120 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.120.160503
arXiv:1705.04335

[34] Kyungjoo Noh, Stefano Pirandola, and Liang Jiang, ``Enhanced energy-constrained quantum communication over bosonic Gaussian channels'' Nature Communications 11, 457 (2020).
https:/​/​doi.org/​10.1038/​s41467-020-14329-6
arXiv:1811.06988
http:/​/​www.nature.com/​articles/​s41467-020-14329-6

[35] Yingkai Ouyang ``Channel covariance, twirling, contraction, and some upper bounds on the quantum capacity'' Quantum Information and Computation (2011).
https:/​/​doi.org/​10.26421/​QIC17.11-12
arXiv:1106.2337

[36] E. M. Rains ``A semidefinite program for distillable entanglement'' IEEE Transactions on Information Theory 47, 2921–2933 (2001).
https:/​/​doi.org/​10.1109/​18.959270

[37] E. M. Rains ``Bound on distillable entanglement'' Physical Review A 60, 179–184 (1999).
https:/​/​doi.org/​10.1103/​PhysRevA.60.179

[38] Matteo Rosati, Andrea Mari, and Vittorio Giovannetti, ``Narrow bounds for the quantum capacity of thermal attenuators'' Nature Communications 9 (2018).
https:/​/​doi.org/​10.1038/​s41467-018-06848-0
arXiv:1801.04731

[39] Vikesh Siddhuand Robert B. Griffiths ``Positivity and Nonadditivity of Quantum Capacities Using Generalized Erasure Channels'' IEEE Transactions on Information Theory 67, 4533–4545 (2021).
https:/​/​doi.org/​10.1109/​TIT.2021.3080819
arXiv:2003.00583

[40] Peter W Shor ``The quantum channel capacity and coherent information'' lecture notes, MSRI Workshop on Quantum Computation (Quantum Information and Cryptography) (2002) https:/​/​www.msri.org/​workshops/​203/​schedules/​1181.
https:/​/​www.msri.org/​workshops/​203/​schedules/​1181

[41] Vikesh Siddhu ``Leaking information to gain entanglement'' (2020).
arXiv:2011.15116

[42] Vikesh Siddhu ``Entropic singularities give rise to quantum transmission'' Nature Communications 12, 5750 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-25954-0
arXiv:2003.10367

[43] Graeme Smith ``Private classical capacity with a symmetric side channel and its application to quantum cryptography'' Physical Review A 78, 022306 (2008).
https:/​/​doi.org/​10.1103/​PhysRevA.78.022306
arXiv:0705.3838

[44] Graeme Smithand John A. Smolin ``Degenerate Quantum Codes for Pauli Channels'' Physical Review Letters 98, 030501 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.98.030501

[45] Peter W. Shorand John A. Smolin ``Quantum Error-Correcting Codes Need Not Completely Reveal the Error Syndrome'' (1996).
http:/​/​arxiv.org/​abs/​quant-ph/​9604006

[46] Graeme Smith, John A. Smolin, and Andreas Winter, ``The quantum capacity with symmetric side channels'' IEEE Transactions on Information Theory 54, 4208–4217 (2008).
https:/​/​doi.org/​10.1109/​TIT.2008.928269

[47] Graeme Smith, John A. Smolin, and Jon Yard, ``Quantum communication with Gaussian channels of zero quantum capacity'' Nature Photonics 5, 624–627 (2011).
https:/​/​doi.org/​10.1038/​nphoton.2011.203
arXiv:1102.4580
http:/​/​www.nature.com/​articles/​nphoton.2011.203

[48] David Sutter, Volkher B. Scholz, Andreas Winter, and Renato Renner, ``Approximate Degradable Quantum Channels'' IEEE Transactions on Information Theory 63, 7832–7844 (2017).
https:/​/​doi.org/​10.1109/​TIT.2017.2754268
arXiv:1412.0980

[49] Graeme Smithand Jon Yard ``Quantum communication with zero-capacity channels'' Science 321, 1812–1815 (2008).
https:/​/​doi.org/​10.1126/​science.1162242
arXiv:0807.4935

[50] Xin Wang ``Pursuing the fundamental limits for quantum communication'' IEEE Transactions on Information Theory 67, 4524–4532 (2021).
https:/​/​doi.org/​10.1109/​TIT.2021.3068818
arXiv:1912.00931
https:/​/​ieeexplore.ieee.org/​document/​9386074/​

[51] Mark M. Wilde ``Quantum Information Theory'' Cambridge University Press (2017).
https:/​/​doi.org/​10.1017/​9781316809976
http:/​/​ebooks.cambridge.org/​ref/​id/​CBO9781316809976

[52] William K. Wootters ``A Wigner-function formulation of finite-state quantum mechanics'' Annals of Physics 176 (1987).
https:/​/​doi.org/​10.1016/​0003-4916(87)90176-X

[53] Michael M. Wolfand David Pérez-García ``Quantum capacities of channels with small environment'' Physical Review A 75, 012303 (2007).
https:/​/​doi.org/​10.1103/​PhysRevA.75.012303

[54] Andreas Winterand Dong Yang ``Potential capacities of quantum channels'' IEEE Transactions on Information Theory 62 (2016).
https:/​/​doi.org/​10.1109/​TIT.2016.2519920
arXiv:1505.00907

[55] Jon Yard, Patrick Hayden, and Igor Devetak, ``Capacity theorems for quantum multiple-access channels: classical-quantum and quantum-quantum capacity regions'' IEEE Transactions on Information Theory 54, 3091–3113 (2008).
https:/​/​doi.org/​10.1109/​TIT.2008.924665

[56] Shang Yu, Yu Meng, Raj B. Patel, Yi-Tao Wang, Zhi-Jin Ke, Wei Liu, Zhi-Peng Li, Yuan-Ze Yang, Wen-Hao Zhang, Jian-Shun Tang, Chuan-Feng Li, and Guang-Can Guo, ``Experimental observation of coherent-information superadditivity in a dephrasure channel'' Physical Review Letters 125 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.060502
arXiv:2003.13000

[57] Elton Yechao Zhu, Quntao Zhuang, Min Hsiu Hsieh, and Peter W. Shor, ``Superadditivity in Trade-Off Capacities of Quantum Channels'' IEEE Transactions on Information Theory 65, 3973–3989 (2019).
https:/​/​doi.org/​10.1109/​TIT.2018.2889082
arXiv:1708.04314

[58] Elton Yechao Zhu, Quntao Zhuang, and Peter W. Shor, ``Superadditivity of the Classical Capacity with Limited Entanglement Assistance'' Physical Review Letters 119 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.040503
arXiv:1704.06955

Cited by

[1] Marco Fanizza, Raffaele Salvia, and Vittorio Giovannetti, "Testing identity of collections of quantum states: sample complexity analysis", arXiv:2103.14511.

[2] Seid Koudia, Angela Sara Cacciapuoti, Kyrylo Simonov, and Marcello Caleffi, "How Deep the Theory of Quantum Communications Goes: Superadditivity, Superactivation and Causal Activation", arXiv:2108.07108.

[3] Marco Fanizza, Farzad Kianvash, and Vittorio Giovannetti, "Estimating Quantum and Private Capacities of Gaussian Channels via Degradable Extensions", Physical Review Letters 127 21, 210501 (2021).

[4] Felix Leditzky, Debbie Leung, Vikesh Siddhu, Graeme Smith, and John A. Smolin, "Generic nonadditivity of quantum capacity in simple channels", arXiv:2202.08377.

[5] Abbas Poshtvan and Vahid Karimipour, "Capacities of the covariant Pauli channel", arXiv:2206.06106.

The above citations are from SAO/NASA ADS (last updated successfully 2022-10-05 01:26:09). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2022-10-05 01:26:07).