Warning: Invalid argument supplied for foreach() in /home/www/wordpress/wp-content/plugins/o3po/includes/class-o3po-crossref.php on line 189

Resolution of Quantum Imaging with Undetected Photons

Jorge Fuenzalida1,2, Armin Hochrainer1,2, Gabriela Barreto Lemos3,4, Evelyn A. Ortega1,2, Radek Lapkiewicz5, Mayukh Lahiri6, and Anton Zeilinger1,2

1Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, Vienna A-1090, Austria
2Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, Boltzmanngasse 5, University of Vienna, Vienna A-1090, Austria
3Instituto de Física, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Rio de Janeiro, CP: 68528, Brazil
4Physics Department, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston MA 02125, USA
5Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, Warsaw 02-093, Poland
6Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Quantum imaging with undetected photons is a recently introduced technique that goes significantly beyond what was previously possible. In this technique, images are formed without detecting the light that interacted with the object that is imaged. Given this unique advantage over the existing imaging schemes, it is now of utmost importance to understand its resolution limits, in particular what governs the maximal achievable spatial resolution.
We show both theoretically and experimentally that the momentum correlation between the detected and undetected photons governs the spatial resolution — a stronger correlation results in a higher resolution. In our experiment, the momentum correlation plays the dominating role in determining the resolution compared to the effect of diffraction. We find that the resolution is determined by the wavelength of the undetected light rather than the wavelength of the detected light. Our results thus show that it is in principle possible to obtain resolution characterized by a wavelength much shorter than the detected wavelength.

Superposition and entanglement are some unique features of quantum physics. Based on these fascinating properties, new promising technologies are being developed in communications, computing, and sensing. In quantum imaging, a technique called ‘quantum imaging with undetected photons’ allows imaging an object without detecting the light that interacts with it. Therefore, this technique removes detection constraints for exotic wavelengths, enabling hyperspectral imaging and beyond possible. Although this technique was introduced in 2014, no thorough work has been done on its resolution. Here we present a comprehensive study on the resolution of quantum imaging with undetected photons.

► BibTeX data

► References

[1] C. Bruschini, H. Homulle, I. M. Antolovic, S. Burri, and E. Charbon, ``Single-photon avalanche diode imagers in biophotonics: review and outlook'' Light Sci. Appl. 8, 87 (2019).
https:/​/​doi.org/​10.1038/​s41377-019-0191-5

[2] G. Lubin, R. Tenne, I. M. Antolovic, E. Charbon, C. Bruschini, and D. Oron, ``Quantum correlation measurement with single photon avalanche diode arrays'' Opt. Express 27, 32863–32882 (2019).
https:/​/​doi.org/​10.1364/​OE.27.032863

[3] A. Nomerotski ``Imaging and time stamping of photons with nanosecond resolution in Timepix based optical cameras'' Nucl. Instrum. Methods Phys. Res., Sect. A 937, 26–30 (2019).
https:/​/​doi.org/​10.1016/​j.nima.2019.05.034

[4] A. V. Burlakov, M. V. Chekhova, D. N. Klyshko, S. P. Kulik, A. N. Penin, Y. H. Shih, and D. V. Strekalov, ``Interference effects in spontaneous two-photon parametric scattering from two macroscopic regions'' Phys. Rev. A 56, 3214–3225 (1997).
https:/​/​doi.org/​10.1103/​PhysRevA.56.3214

[5] A. Mosset, F. Devaux, and E. Lantz, ``Spatially Noiseless Optical Amplification of Images'' Phys. Rev. Lett. 94, 223603 (2005).
https:/​/​doi.org/​10.1103/​PhysRevLett.94.223603

[6] S. P. Walborn, C. H. Monken, S. Pádua, and P. H. S. Ribeiro, ``Spatial correlations in parametric down-conversion'' Phys. Rep. 495, 87–139 (2010).
https:/​/​doi.org/​10.1016/​j.physrep.2010.06.003

[7] P. A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, ``Imaging with quantum states of light'' Nat. Rev. Phys. 1, 367–380 (2019).
https:/​/​doi.org/​10.1038/​s42254-019-0056-0

[8] M. Kutas, B. Haase, P. Bickert, F. Riexinger, D. Molter, and G. von Freymann, ``Terahertz quantum sensing'' Sci. Adv. 6, eaaz8065 (2020).
https:/​/​doi.org/​10.1126/​sciadv.aaz8065

[9] R. Nairand M. Tsang ``Far-Field Superresolution of Thermal Electromagnetic Sources at the Quantum Limit'' Phys. Rev. Lett. 117, 190801 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.190801

[10] M. Parniak, S. Borówka, K. Boroszko, W. Wasilewski, K. Banaszek, and R. Demkowicz-Dobrza ński, ``Beating the Rayleigh Limit Using Two-Photon Interference'' Phys. Rev. Lett. 121, 250503 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.121.250503

[11] O. S. Magaña-Loaizaand R. W. Boyd ``Quantum imaging and information'' Rep. Prog. Phys. 82, 124401 (2019).
https:/​/​doi.org/​10.1088/​1361-6633/​ab5005

[12] G. Brida, M. Genovese, and I. R. Berchera, ``Experimental realization of sub-shot-noise quantum imaging'' Nat. Photon. 4, 227–230 (2010).
https:/​/​doi.org/​10.1038/​nphoton.2010.29

[13] J. Sabines-Chesterking, A. R. McMillan, P. A. Moreau, S. K. Joshi, S. Knauer, E. Johnston, J. G. Rarity, and J. C. F. Matthews, ``Twin-beam sub-shot-noise raster-scanning microscope'' Opt. Express 27, 30810–30818 (2019).
https:/​/​doi.org/​10.1364/​OE.27.030810

[14] G. T. Garces, H. M. Chrzanowski, S. Daryanoosh, V. Thiel, A. L. Marchant, R. B. Patel, P. C. Humphreys, A. Datta, and I. A. Walmsley, ``Quantum-enhanced stimulated emission detection for label-free microscopy'' Appl. Phys. Lett. 117, 024002 (2020).
https:/​/​doi.org/​10.1063/​5.0009681

[15] O. Schwartz, J. M. Levitt, R. Tenne, S. Itzhakov, Z. Deutsch, and D. Oron, ``Superresolution microscopy with quantum emitters'' Nano Lett. 13, 5832–5836 (2013).
https:/​/​doi.org/​10.1021/​nl402552m

[16] A. Classen, J. von Zanthier, M. O. Scully, and G. S. Agarwal, ``Superresolution via structured illumination quantum correlation microscopy'' Optica 4, 580–587 (2017).
https:/​/​doi.org/​10.1364/​OPTICA.4.000580

[17] M. Unternährer, B. Bessire, L. Gasparini, M. Perenzoni, and A. Stefanov, ``Super-resolution quantum imaging at the Heisenberg limit'' Optica 5, 1150–1154 (2018).
https:/​/​doi.org/​10.1364/​OPTICA.5.001150

[18] R. Tenne, U. Rossman, B. Rephael, Y. Israel, A. Krupinski-Ptaszek, R. Lapkiewicz, Y. Silberberg, and D. Oron, ``Super-resolution enhancement by quantum image scanning microscopy'' Nat. Photon. 13, 116–122 (2019).
https:/​/​doi.org/​10.1038/​s41566-018-0324-z

[19] D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, ``Observation of two-photon “ghost” interference and diffraction'' Phys. Rev. Lett. 74, 3600 (1995).
https:/​/​doi.org/​10.1103/​PhysRevLett.74.3600

[20] T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, ``Optical imaging by means of two-photon quantum entanglement'' Phys. Rev. A 52, R3429 (1995).
https:/​/​doi.org/​10.1103/​PhysRevA.52.R3429

[21] R. S. Bennink, S. J. Bentley, and R. W. Boyd, ``“Two-photon” coincidence imaging with a classical source'' Phys. Rev. Lett. 89, 113601 (2002).
https:/​/​doi.org/​10.1103/​PhysRevLett.89.113601

[22] A. Gatti, E. Brambilla, and L. Lugiato, ``Quantum imaging'' Progress in Optics 51, 251–348 (2008).
https:/​/​doi.org/​10.1016/​S0079-6638(07)51005-X

[23] R. S. Aspden, D. S. Tasca, R. W. Boyd, and M. J. Padgett, ``EPR-based ghost imaging using a single-photon-sensitive camera'' New J. Phys. 15, 073032 (2013).
https:/​/​doi.org/​10.1088/​1367-2630/​15/​7/​073032

[24] G. B. Lemos, V. Borish, G. D. Cole, S. Ramelow, R. Lapkiewicz, and A. Zeilinger, ``Quantum imaging with undetected photons'' Nature 512, 409–412 (2014).
https:/​/​doi.org/​10.1038/​nature13586

[25] M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, ``Theory of quantum imaging with undetected photons'' Phys. Rev. A 92, 013832 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.92.013832

[26] G. B. Lemos, V. Borish, S. Ramelow, R. Lapkiewicz, G. D. Cole, and A. Zeilinger, ``Quantum Imaging with Undetected Photons'' US Patent 9,557.262 B2; EP Patent 2 887 137 B1.

[27] D. A. Kalashnikov, A. V. Paterova, S. P. Kulik, and L. A. Krivitsky, ``Infrared spectroscopy with visible light'' Nat. Photon. 10, 98–101 (2016).
https:/​/​doi.org/​10.1038/​nphoton.2015.252

[28] A. Vallés, G. Jiménez, L. J. Salazar-Serrano, and J. P. Torres, ``Optical sectioning in induced coherence tomography with frequency-entangled photons'' Phys. Rev. A 97, 023824 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.023824

[29] A. V. Paterova, H. Yang, C. An, D. A. Kalashnikov, and L. A. Krivitsky, ``Tunable optical coherence tomography in the infrared range using visible photons'' Quantum Sci. Technol. 3, 025008 (2018).
https:/​/​doi.org/​10.1088/​2058-9565/​aab567

[30] X. Y. Zou, L. J. Wang, and L. Mandel, ``Induced coherence and indistinguishability in optical interference'' Phys. Rev. Lett. 67, 318 (1991).
https:/​/​doi.org/​10.1103/​PhysRevLett.67.318

[31] L. J. Wang, X. Y. Zou, and L. Mandel, ``Induced coherence without induced emission'' Phys. Rev. A 44, 4614 (1991).
https:/​/​doi.org/​10.1103/​PhysRevA.44.4614

[32] R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, ``Quantum and Classical Coincidence Imaging'' Phys. Rev. Lett. 92, 033601 (2004).
https:/​/​doi.org/​10.1103/​PhysRevLett.92.033601

[33] K. W. C. Chan, M. N. O'Sullivan, and R. W. Boyd, ``Two-color ghost imaging'' Phys. Rev. A 79, 033808 (2009).
https:/​/​doi.org/​10.1103/​PhysRevA.79.033808

[34] P. A. Moreau, E. Toninelli, P. A. Morris, R. S. Aspden, T. Gregory, G. Spalding, R. W. Boyd, and M. J. Padgett, ``Resolution limits of quantum ghost imaging'' Opt. Express 26, 7528–7536 (2018).
https:/​/​doi.org/​10.1364/​OE.26.007528

[35] A. Hochrainer, M. Lahiri, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, ``Quantifying the momentum correlation between two light beams by detecting one'' Proc. Natl. Acad. Sci. USA 114, 1508–1511 (2017).
https:/​/​doi.org/​10.1073/​pnas.1620979114

[36] M. Lahiri, A. Hochrainer, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, ``Twin-photon correlations in single-photon interference'' Phys. Rev. A 96, 013822 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.96.013822

[37] H. M. Wisemanand K. Mølmer ``Induced coherence with and without induced emission'' Phys. Lett. A 270, 245–248 (2000).
https:/​/​doi.org/​10.1016/​S0375-9601(00)00314-5

[38] M. Lahiri, A. Hochrainer, R. Lapkiewicz, G. B. Lemos, and A. Zeilinger, ``Nonclassicality of induced coherence without induced emission'' Phys. Rev. A 100, 053839 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.100.053839

[39] C. H. Monken, P. H. S. Ribeiro, and S. Pádua, ``Transfer of angular spectrum and image formation in spontaneous parametric down-conversion'' Phys. Rev. A 57, 3123 (1998).
https:/​/​doi.org/​10.1103/​PhysRevA.57.3123

[40] A. A. Harmsand A. Zeilinger ``A new formulation of total unsharpness in radiography'' Phys. Med. Biol. 22, 70 (1977).
https:/​/​doi.org/​10.1088/​0031-9155/​22/​1/​009

[41] G. D. Boreman ``Modulation transfer function in optical and electro-optical systems'' SPIE press Bellingham, WA (2001).

[42] M. Bornand E. Wolf ``Principles of optics'' Cambridge University Press (1999).

[43] J. W. Goodman ``Introduction to Fourier optics'' Roberts Company Publishers (2005).

[44] A. Schori, C. Bömer, D. Borodin, S. P. Collins, B. Detlefs, M. M. Sala, S. Yudovich, and S. Shwartz, ``Parametric down-conversion of x rays into the optical regime'' Phys. Rev. Lett. 119, 253902 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.253902

[45] A. V. Paterova, S. M. Maniam, H. Yang, G. Grenci, and L. A. Krivitsky, ``Hyperspectral infrared microscopy with visible light'' Sci. Adv. 6, eabd0460 (2020).
https:/​/​doi.org/​10.1126/​sciadv.abd0460

[46] I. Kviatkovsky, H. M. Chrzanowski, E. G. Avery, H. Bartolomaeus, and S. Ramelow, ``Microscopy with undetected photons in the mid-infrared'' Sci. Adv. 6, eabd0264 (2020).
https:/​/​doi.org/​10.1126/​sciadv.abd0264

[47] A. V. Paterova, H. Yang, Z. S. D. Toa, and L. A. Krivitsky, ``Quantum imaging for the semiconductor industry'' Appl. Phys. Lett. 117, 054004 (2020).
https:/​/​doi.org/​10.1063/​5.0015614

[48] A. V. Paterova, D. A. Kalashnikov, E. Khaidarov, H. Yang, T. W. W. Mass, R. Paniagua-Domı́nguez, A. I. Kuznetsov, and L. A. Krivitsky, ``Non-linear interferometry with infrared metasurfaces'' Nanophotonics 10, 1775–1784 (2021).
https:/​/​doi.org/​10.1515/​nanoph-2021-0011

[49] M. Gilaberte Basset, A. Hochrainer, S. Töpfer, F. Riexinger, P. Bickert, J. R. León-Torres, F. Steinlechner, and M. Gräfe, ``Video-Rate Imaging with Undetected Photons'' Laser Photonics Rev. 15, 2000327 (2021).
https:/​/​doi.org/​10.1002/​lpor.202000327

Cited by

[1] Marta Gilaberte Basset, Armin Hochrainer, Sebastian Töpfer, Felix Riexinger, Patricia Bickert, Josué Ricardo León-Torres, Fabian Steinlechner, and Markus Gräfe, "Video-Rate Imaging with Undetected Photons", Laser & Photonics Reviews 15 6, 2000327 (2021).

[2] Balakrishnan Viswanathan, Gabriela Barreto Lemos, and Mayukh Lahiri, "Resolution limit in quantum imaging with undetected photons using position correlations", Optics Express 29 23, 38185 (2021).

[3] Balakrishnan Viswanathan, Gabriela Barreto Lemos, and Mayukh Lahiri, "Position correlation enabled quantum imaging with undetected photons", Optics Letters 46 15, 3496 (2021).

[4] Inna Kviatkovsky, Helen M. Chrzanowski, and Sven Ramelow, "Mid-infrared microscopy via position correlations of undetected photons", Optics Express 30 4, 5916 (2022).

The above citations are from SAO/NASA ADS (last updated successfully 2024-09-16 23:16:50). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2024-09-16 23:16:49).