Eigenstate entanglement scaling for critical interacting spin chains

Qiang Miao and Thomas Barthel

Department of Physics, Duke University, Durham, North Carolina 27708, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


With increasing subsystem size and energy, bipartite entanglement entropies of energy eigenstates cross over from the groundstate scaling to a volume law. In previous work, we pointed out that, when strong or weak eigenstate thermalization (ETH) applies, the entanglement entropies of all or, respectively, almost all eigenstates follow a single crossover function. The crossover functions are determined by the subsystem entropy of thermal states and assume universal scaling forms in quantum-critical regimes. This was demonstrated by field-theoretical arguments and the analysis of large systems of non-interacting fermions and bosons. Here, we substantiate such scaling properties for integrable and non-integrable interacting spin-1/2 chains at criticality using exact diagonalization. In particular, we analyze XXZ and transverse-field Ising models with and without next-nearest-neighbor interactions. Indeed, the crossover of thermal subsystem entropies can be described by a universal scaling function following from conformal field theory. Furthermore, we analyze the validity of ETH for entanglement in these models. Even for the relatively small system sizes that can be simulated, the distributions of eigenstate entanglement entropies are sharply peaked around the subsystem entropies of the corresponding thermal ensembles.

In contrast to classical systems, the state-space for a quantum many-body system grows exponentially in the number of its components. The goal of quantum computation is to exploit this enormous complexity to solve problems that are intractable for our usual classical computers. A decisive resource for quantum information processing is entanglement. Beyond that, measures of entanglement are used to understand and quantify the complexity of quantum matter.

Entanglement in ground states — the lowest energy states that the system approaches at very low temperatures — had been studied previously. For quantum many-body ground states, one generally finds that the entanglement between a subsystem and the rest is proportional to the surface area of the subsystem; this is called the area law. Much less was known about excited states, just that excited states are generally much more entangled and that their entanglement entropies should be proportional to the subsystem volume.

In recent contributions, the authors found that, rather generically, entanglement entropies of energy eigenstates are captured by a single crossover function. These functions capture the full crossover from the groundstate entanglement regime at low energies and small subsystem size (area or log-area law) to the extensive volume-law regime at high energies or large subsystem size. Furthermore, in quantum-critical regimes, i.e., a temperature and parameter regime that is dominated by a zero-temperature phase transition point, the crossover functions assume universal scaling forms. These universal scaling functions are shared by large classes of systems, irrespective of their microscopic differences.

These somewhat surprising results are based on the applicability of the eigenstate thermalization hypothesis. This hypothesis asserts that energy eigenstates are basically indistinguishable from thermal states when our observations are restricted to small subsystems of a quantum many-body system. Hence, the entanglement entropies in eigenstates can be deduced from subsystem entropies of corresponding thermal equilibrium states.

► BibTeX data

► References

[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entanglement in many-body systems, Rev. Mod. Phys. 80, 517 (2008).

[2] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2009).

[3] N. Laflorencie, Quantum entanglement in condensed matter systems, Phys. Rep. 646, 1 (2016).

[4] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area laws for the entanglement entropy, Rev. Mod. Phys. 82, 277 (2010).

[5] J. I. Latorre and A. Riera, A short review on entanglement in quantum spin systems, J. Phys. A: Math. Theor. 42, 504002 (2009).

[6] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71, 666 (1993).

[7] C. Callan and F. Wilczek, On geometric entropy, Phys. Lett. B 333, 55 (1994).

[8] J. I. Latorre, E. Rico, and G. Vidal, Ground state entanglement in quantum spin chains, Quantum Info. Comput. 4, 48 (2004).

[9] M. B. Plenio, J. Eisert, J. Dreißig, and M. Cramer, Entropy, entanglement, and area: analytical results for harmonic lattice systems, Phys. Rev. Lett. 94, 060503 (2005).

[10] M. Cramer, J. Eisert, M. B. Plenio, and J. Dreißig, Entanglement-area law for general bosonic harmonic lattice systems, Phys. Rev. A 73, 012309 (2006).

[11] M. B. Hastings, Entropy and entanglement in quantum ground states, Phys. Rev. B 76, 035114 (2007).

[12] F. G. S. L. Brandão and M. Horodecki, An area law for entanglement from exponential decay of correlations, Nat. Phys. 9, 721 (2013).

[13] J. Cho, Realistic area-law bound on entanglement from exponentially decaying correlations, Phys. Rev. X 8, 031009 (2018).

[14] C. Holzhey, F. Larsen, and F. Wilczek, Geometric and renormalized entropy in conformal field theory, Nucl. Phys. B 424, 443 (1994).

[15] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement in quantum critical phenomena, Phys. Rev. Lett. 90, 227902 (2003).

[16] B. Q. Jin and V. E. Korepin, Quantum spin chain, Toeplitz determinants and Fisher-Hartwig conjecture, J. Stat. Phys. 116, 79 (2004).

[17] P. Calabrese and J. L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. P06002 (2004).

[18] H.-Q. Zhou, T. Barthel, J. O. Fjærestad, and U. Schollwöck, Entanglement and boundary critical phenomena, Phys. Rev. A 74, 050305(R) (2006).

[19] M. M. Wolf, Violation of the entropic area law for fermions, Phys. Rev. Lett. 96, 010404 (2006).

[20] D. Gioev and I. Klich, Entanglement entropy of fermions in any dimension and the Widom conjecture, Phys. Rev. Lett. 96, 100503 (2006).

[21] T. Barthel, M.-C. Chung, and U. Schollwöck, Entanglement scaling in critical two-dimensional fermionic and bosonic systems, Phys. Rev. A 74, 022329 (2006).

[22] W. Li, L. Ding, R. Yu, T. Roscilde, and S. Haas, Scaling behavior of entanglement in two- and three-dimensional free-fermion systems, Phys. Rev. B 74, 073103 (2006).

[23] H.-H. Lai, K. Yang, and N. E. Bonesteel, Violation of the entanglement area law in bosonic systems with Bose surfaces: Possible application to Bose metals, Phys. Rev. Lett. 111, 210402 (2013).

[24] S. Murciano, P. Ruggiero, and P. Calabrese, Symmetry resolved entanglement in two-dimensional systems via dimensional reduction, J. Stat. Mech. 083102 (2020).

[25] S. Popescu, A. J. Short, and A. Winter, Entanglement and the foundations of statistical mechanics, Nat. Phys. 2, 754 (2006).

[26] S. Goldstein, J. L. Lebowitz, R. Tumulka, and N. Zanghì, Canonical typicality, Phys. Rev. Lett. 96, 050403 (2006).

[27] J. Gemmer, M. Michel, and G. Mahler, Quantum Thermodynamics, Vol. 657 of Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2004).

[28] V. Alba, M. Fagotti, and P. Calabrese, Entanglement entropy of excited states, J. Stat. Mech. P10020 (2009).

[29] F. Ares, J. G. Esteve, F. Falceto, and E. Sánchez-Burillo, Excited state entanglement in homogeneous fermionic chains, J. Phys. A: Math. Theor. 47, 245301 (2014).

[30] M. Storms and R. R. P. Singh, Entanglement in ground and excited states of gapped free-fermion systems and their relationship with Fermi surface and thermodynamic equilibrium properties, Phys. Rev. E 89, 012125 (2014).

[31] J. Mölter, T. Barthel, U. Schollwöck, and V. Alba, Bound states and entanglement in the excited states of quantum spin chains, J. Stat. Mech. P10029 (2014).

[32] J. P. Keating, N. Linden, and H. J. Wells, Spectra and eigenstates of spin chain Hamiltonians, Commun. Math. Phys. 338, 81 (2015).

[33] L. Vidmar, L. Hackl, E. Bianchi, and M. Rigol, Entanglement entropy of eigenstates of quadratic fermionic Hamiltonians, Phys. Rev. Lett. 119, 020601 (2017).

[34] L. Vidmar and M. Rigol, Entanglement entropy of eigenstates of quantum chaotic Hamiltonians, Phys. Rev. Lett. 119, 220603 (2017).

[35] L. Vidmar, L. Hackl, E. Bianchi, and M. Rigol, Volume law and quantum criticality in the entanglement entropy of excited eigenstates of the quantum Ising model, Phys. Rev. Lett. 121, 220602 (2018).

[36] T.-C. Lu and T. Grover, Renyi entropy of chaotic eigenstates, Phys. Rev. E 99, 032111 (2019).

[37] Y. Huang, Universal eigenstate entanglement of chaotic local Hamiltonians, Nucl. Phys. B 938, 594 (2019).

[38] T. LeBlond, K. Mallayya, L. Vidmar, and M. Rigol, Entanglement and matrix elements of observables in interacting integrable systems, Phys. Rev. E 100, 062134 (2019).

[39] P. Łydżba, M. Rigol, and L. Vidmar, Eigenstate entanglement entropy in random quadratic Hamiltonians, Phys. Rev. Lett. 125, 180604 (2020).

[40] Q. Miao and T. Barthel, Eigenstate entanglement: Crossover from the ground state to volume laws, Phys. Rev. Lett. 127, 040603 (2021).

[41] J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991).

[42] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994).

[43] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).

[44] G. Biroli, C. Kollath, and A. M. Läuchli, Effect of rare fluctuations on the thermalization of isolated quantum systems, Phys. Rev. Lett. 105, 250401 (2010).

[45] W. Beugeling, R. Moessner, and M. Haque, Finite-size scaling of eigenstate thermalization, Phys. Rev. E 89, 042112 (2014).

[46] H. Kim, T. N. Ikeda, and D. A. Huse, Testing whether all eigenstates obey the eigenstate thermalization hypothesis, Phys. Rev. E 90, 052105 (2014).

[47] V. Alba, Eigenstate thermalization hypothesis and integrability in quantum spin chains, Phys. Rev. B 91, 155123 (2015).

[48] H.-H. Lai and K. Yang, Entanglement entropy scaling laws and eigenstate typicality in free fermion systems, Phys. Rev. B 91, 081110(R) (2015).

[49] A. Dymarsky, N. Lashkari, and H. Liu, Subsystem eigenstate thermalization hypothesis, Phys. Rev. E 97, 012140 (2018).

[50] J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81, 082001 (2018).

[51] T. Yoshizawa, E. Iyoda, and T. Sagawa, Numerical large deviation analysis of the eigenstate thermalization hypothesis, Phys. Rev. Lett. 120, 200604 (2018).

[52] T. Barthel and Q. Miao, Scaling functions for eigenstate entanglement crossovers in harmonic lattices, Phys. Rev. A 104, 022414 (2021).

[53] T. Mori, Weak eigenstate thermalization with large deviation bound, arXiv:1609.09776 (2016).

[54] N. Laflorencie and D. Poilblanc, in Quantum Magnetism, Vol. 645 of Lecture Notes in Physics, edited by U. Schollwöck, J. Richter, D. J. J. Farnell, and R. F. Bishop (Springer, Berlin, 2004), pp. 227–252.

[55] A. W. Sandvik, Computational studies of quantum spin systems, AIP Conf. Proc. 1297, 135 (2010).

[56] H. A. Bethe, Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Z. Phys. 71, 205 (1931).

[57] V. Korepin, N. Bogoliubov, and A. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1993).

[58] K. Nomura and K. Okamoto, Critical properties of S= 1/​2 antiferromagnetic XXZ chain with next-nearest-neighbour interactions, J. Phys. A: Math. Gen. 27, 5773 (1994).

[59] R. D. Somma and A. A. Aligia, Phase diagram of the XXZ chain with next-nearest-neighbor interactions, Phys. Rev. B 64, 024410 (2001).

[60] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241, 333 (1984).

[61] P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory (Springer, New York, 1997).

[62] J. Polchinski, Scale and conformal invariance in quantum field theory, Nucl. Phys. B 303, 226 (1988).

[63] V. E. Korepin, Universality of entropy scaling in one dimensional gapless models, Phys. Rev. Lett. 92, 096402 (2004).

[64] T. N. Ikeda, Y. Watanabe, and M. Ueda, Eigenstate randomization hypothesis: Why does the long-time average equal the microcanonical average?, Phys. Rev. E 84, 021130 (2011).

[65] T. N. Ikeda, Y. Watanabe, and M. Ueda, Finite-size scaling analysis of the eigenstate thermalization hypothesis in a one-dimensional interacting Bose gas, Phys. Rev. E 87, 012125 (2013).

[66] I. Peschel and V. J. Emery, Calculation of spin correlations in two-dimensional Ising systems from one-dimensional kinetic models, Z. Phys. B 43, 241 (1981).

[67] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge University Press, Cambridge, UK, 2011).

[68] M. E. Fisher and W. Selke, Infinitely many commensurate phases in a simple Ising model, Phys. Rev. Lett. 44, 1502 (1980).

[69] P. Ruján, Critical behavior of two-dimensional models with spatially modulated phases: Analytic results, Phys. Rev. B 24, 6620 (1981).

[70] P. Bak, Commensurate phases, incommensurate phases and the devil's staircase, Rep. Prog. Phys. 45, 587 (1982).

[71] W. Selke, The ANNNI model – Theoretical analysis and experimental application, Phys. Rep. 170, 213 (1988).

[72] D. Allen, P. Azaria, and P. Lecheminant, A two-leg quantum Ising ladder: a bosonization study of the ANNNI model, J. Phys. A 34, L305 (2001).

[73] M. Beccaria, M. Campostrini, and A. Feo, Density-matrix renormalization-group study of the disorder line in the quantum axial next-nearest-neighbor Ising model, Phys. Rev. B 73, 052402 (2006).

[74] M. Beccaria, M. Campostrini, and A. Feo, Evidence for a floating phase of the transverse ANNNI model at high frustration, Phys. Rev. B 76, 094410 (2007).

[75] E. Sela and R. G. Pereira, Orbital multicriticality in spin-gapped quasi-one-dimensional antiferromagnets, Phys. Rev. B 84, 014407 (2011).

[76] A. Dutta, G. Aeppli, B. Chakrabarti, U. Divakaran, T. Rosenbaum, and D. Sen, Quantum Phase Transitions in Transverse Field Spin Models (Cambridge University Press, Cambridge, 2015).

[77] E. Fradkin, Field Theories of Condensed Matter Physics (Cambridge University Press, Cambridge, 2013).

[78] F. Hassler and D. Schuricht, Strongly interacting Majorana modes in an array of Josephson junctions, New J. Phys. 14, 125018 (2012).

[79] R. Cole, F. Pollmann, and J. J. Betouras, Entanglement scaling and spatial correlations of the transverse-field Ising model with perturbations, Phys. Rev. B 95, 214410 (2017).

[80] I. Mahyaeh and E. Ardonne, Study of the phase diagram of the Kitaev-Hubbard chain, Phys. Rev. B 101, 085125 (2020).

[81] P. Jordan and E. Wigner, About the Pauli exclusion principle, Z. Phys. 47, 631 (1928).

Cited by

[1] Qiang Miao and Thomas Barthel, "Eigenstate entanglement: Crossover from the ground state to volume laws", arXiv:1905.07760.

[2] Thomas Barthel and Qiang Miao, "Scaling functions for eigenstate entanglement crossovers in harmonic lattices", Physical Review A 104 2, 022414 (2021).

[3] Eugenio Bianchi, Lucas Hackl, Mario Kieburg, Marcos Rigol, and Lev Vidmar, "Volume-law entanglement entropy of typical pure quantum states", arXiv:2112.06959.

[4] Patrycja ŁydŻba, Marcos Rigol, and Lev Vidmar, "Entanglement in many-body eigenstates of quantum-chaotic quadratic Hamiltonians", Physical Review B 103 10, 104206 (2021).

The above citations are from SAO/NASA ADS (last updated successfully 2022-05-29 01:28:06). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2022-05-29 01:28:04).